poshmark/pms.py

167 lines
6.2 KiB
Python
Raw Normal View History

2020-05-26 01:36:44 +00:00
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import re
import bs4
from bs4 import BeautifulSoup as b
import requests
import time
# Initial Search Query URL to Find ItemCondition Code
while True:
print("Title Search:")
start = time.time()
SQ = str(input())
SQ_1 = SQ.replace(' ', '+').replace('NEW','').replace('men', '').replace('women', '')
gender = ['Men', 'Women']
#&color[]=color
posh_colors = ['Red', 'Pink', 'Orange', 'Yellow', 'Green', 'Blue', 'Purple', 'Gold', 'Silver', 'Black', 'Gray', 'White', 'Cream', 'Brown', 'Tan']
for i in range(0,len(posh_colors)):
if posh_colors[i] in SQ:
url_color = '&color[]=' + posh_colors[i]
url_separator = "&availability=sold_out" + url_color + "&department=All&max_id="
url_separator1 = "&availability=sold_out" + url_color + "&condition=nwt_and_ret&department=All&max_id="
SQ_1 = SQ_1.replace(posh_colors[i], '')
break
else:
url_separator = "&availability=sold_out&department=All&max_id="
url_separator1 = "&availability=sold_out&condition=nwt_and_ret&department=All&max_id="
prices = []
prices1 = []
base_url = "https://poshmark.com/search?query="
pg = 1
url = base_url + SQ_1 + url_separator + str(pg)
url_1 = base_url + SQ_1 + url_separator1 + str(pg)
url_a = base_url + SQ_1 + url_separator + str(pg)
url_1b = base_url + SQ_1 + url_separator1 + str(pg)
html = requests.get(url).text
html1 = requests.get(url_1).text
soup = b(html, "html.parser")
soup1 = b(html1,'html.parser')
# Begin new and used condition items price list:
for listing in soup.findAll("div", {"class": "item__details"}):
price = listing.findAll("span", {"class": "p--t--1 fw--bold"})[0].text
indices = price.find('$')
price = price[indices+1:]
space = price.find(' ')
price = int(price[:space-1])
prices.append(price)
while True:
last_page = soup.find_all(string = re.compile('No Listings Found'))
if last_page:
break
pg = pg + 1
url = base_url + SQ_1 + url_separator + str(pg)
html = requests.get(url).text
soup = b(html, "html.parser")
for listing in soup.findAll("div", {"class": "item__details"}):
price = listing.findAll("span", {"class": "p--t--1 fw--bold"})[0].text
#indices = [i for i, dollars in enumerate(price) if dollars == '$']
#price = int(price[1:indices[1]-1])
indices = price.find('$')
price = price[indices+1:]
space = price.find(' ')
price = int(price[:space-1])
prices.append(price)
# Begin new condition item prices list:
for listing in soup1.findAll("div", {"class": "item__details"}):
price1 = listing.findAll("span", {"class": "p--t--1 fw--bold"})[0].text
#indices = [i for i, dollars in enumerate(price1) if dollars == '$']
#price1 = int(price1[1:indices[1]-1])
indices = price1.find('$')
price1 = price1[indices+1:]
space = price1.find(' ')
price1 = int(price1[:space-1])
prices1.append(price1)
while True:
last_page = soup1.find_all(string = re.compile('No Listings Found'))
if last_page:
break
pg = pg + 1
url_1 = base_url + SQ_1 + url_separator1 + str(pg)
html1 = requests.get(url_1).text
soup1 = b(html1, "html.parser")
for listing in soup1.findAll("div", {"class": "item__details"}):
price1 = listing.findAll("span", {"class": "p--t--1 fw--bold"})[0].text
#indices = [i for i, dollars in enumerate(price1) if dollars == '$']
#price1 = int(price1[1:indices[1]-1])
indices = price1.find('$')
price1 = price1[indices+1:]
space = price1.find(' ')
price1 = int(price1[:space-1])
prices1.append(price1)
# Begin Element-wise substraction of new condition items price list from new&used items price list:
print(len(prices), 'NEW & USED')
print(len(prices1), 'NEW')
end = time.time()
print(end - start)
for element in prices1:
prices.remove(element)
if 'NEW' in SQ:
kde_datapoints = sns.kdeplot(prices1, shade = True).get_lines()[0].get_data()
sns.rugplot(prices1)
print(str(len(prices1)) + " Results" + "\n")
print("Average Price Sold New = $" + str(np.mean(prices1)) + "\n")
total_price = np.mean(prices1) + 6.79
print("Average Total Price New = $" + str(total_price) + "\n")
print("Flat Rate Shipping = $6.79" + "\n")
kde_x = kde_datapoints[0]
kde_y = kde_datapoints[1]
optimal_price = kde_x[np.argmax(kde_y)]
print("Optimal Price New = $" + str(optimal_price) + "\n")
print("Optimal Price Including Shipping New = $" + str(optimal_price + 6.79) + "\n")
print("URL Link (New): " + url_1b + "\n")
plt.ylabel('KDE')
plt.xlabel('Price ($)')
plt.show()
else:
try:
kde_datapoints = sns.kdeplot(prices, shade = True).get_lines()[0].get_data()
sns.rugplot(prices)
print(str(len(prices)) + " Results" + "\n")
print("Average Price Sold Used = $" + str(np.mean(prices)) + "\n")
total_price = np.mean(prices) + 6.79
print("Average Total Price Used = $" + str(total_price) + "\n")
print("Flat Rate Shipping = $6.79" + "\n")
import winsound
winsound.Beep(440, 300)
kde_x = kde_datapoints[0]
kde_y = kde_datapoints[1]
optimal_price = kde_x[np.argmax(kde_y)]
print("Optimal Price Used = $" + str(optimal_price) + "\n")
print("Optimal Price Including Shipping Used = $" + str(optimal_price + 6.79) + "\n")
print("URL Link: " + url_a + "\n")
plt.ylabel('KDE')
plt.xlabel('Price ($)')
plt.show()
except IndexError:
print('\n' + '0 results' + '\n')
pass