125 lines
2.7 KiB
Plaintext
125 lines
2.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "7eea0d4d",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Num GPUs Available: 2\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import tensorflow as tf\n",
|
|
"print(\"Num GPUs Available: \", len(tf.config.list_physical_devices('GPU')))\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "33d18ebd",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"2 Physical GPU, 3 Logical GPUs\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"gpus = tf.config.list_physical_devices('GPU')\n",
|
|
"if gpus:\n",
|
|
" # Create 2 virtual GPUs with 1GB memory each\n",
|
|
" try:\n",
|
|
" tf.config.set_logical_device_configuration(\n",
|
|
" gpus[0],\n",
|
|
" [tf.config.LogicalDeviceConfiguration(memory_limit=1024),\n",
|
|
" tf.config.LogicalDeviceConfiguration(memory_limit=1024)])\n",
|
|
" logical_gpus = tf.config.list_logical_devices('GPU')\n",
|
|
" print(len(gpus), \"Physical GPU,\", len(logical_gpus), \"Logical GPUs\")\n",
|
|
" except RuntimeError as e:\n",
|
|
" # Virtual devices must be set before GPUs have been initialized\n",
|
|
" print(e)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "2b9ca96e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"tf.Tensor(\n",
|
|
"[[22. 28.]\n",
|
|
" [49. 64.]], shape=(2, 2), dtype=float32)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"tf.debugging.set_log_device_placement(True)\n",
|
|
"\n",
|
|
"a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\n",
|
|
"b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])\n",
|
|
"\n",
|
|
"# Run on the GPU\n",
|
|
"c = tf.matmul(a, b)\n",
|
|
"print(c)\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from keras.models import load_model\n",
|
|
"\n",
|
|
"# returns a compiled model\n",
|
|
"# identical to the previous one\n",
|
|
"model = load_model('Model_1.h5')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"model.predict_generator()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.10"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|