ebay-ml-lister/ebay_api.py

197 lines
9.2 KiB
Python

import importlib
import numpy as np
import concurrent.futures
import json
import requests
import pandas as pd
class FindingApi:
'''Methods for accessing eBays FindingApi services'''
def __init__(self, service, pageNumber):
self.service = [
'findItemsAdvanced', 'findCompletedItems',
'findItemsByKeywords', 'findItemsIneBayStores', 'findItemsByCategory',
'findItemsByProduct'
][service]
self.pageNumber = list(range(1, pageNumber)) # 64 pages is recommended
# as this will give equal weights to cats given call constraints
# departments = ["3034","93427"] (womens and mens)
def get_data(self, category_id, i):
'''
Gets raw JSON data fom FindingApi service call
Currently being used to get itemIDs from categories
'''
params = {
"OPERATION-NAME":self.service,
"SECURITY-APPNAME":"scottbea-xlister-PRD-6796e0ff6-14862949",
"SERVICE-VERSION":"1.13.0",
"RESPONSE-DATA-FORMAT":"JSON",
"categoryId":category_id,
"paginationInput.entriesPerPage":"100",
"paginationInput.PageNumber":i
}
response = requests.get("https://svcs.ebay.com/services/search/FindingService/v1",
params=params)
data = response.json()
return data
def get_ids_from_cats(self):
'''
Creates a 20-itemId list to use for the ShoppingApi
call
'''
pages = self.pageNumber
itemid_results_list = []
with open('cat_list.txt') as jf:
cat_list = json.load(jf)
for category_id in cat_list:
args = [(category_id, i) for i in pages]
with concurrent.futures.ThreadPoolExecutor() as executor:
for future in executor.map(lambda p: self.get_data(*p), args):
data = future
try: # TODO if conditions are not working due to each thread checking the same unedited item_id_results list
training = pd.read_csv('training.csv')
for item in data['findItemsByCategoryResponse'][0]['searchResult'][0]['item']:
if (item not in training.values) and (item not in itemid_results_list):
itemid_results_list.append(item['itemId'][0])
except (pd.errors.EmptyDataError, FileNotFoundError):
for item in data['findItemsByCategoryResponse'][0]['searchResult'][0]['item']:
if item not in itemid_results_list:
itemid_results_list.append(item['itemId'][0])
item_id_results = list(set(itemid_results_list))
item_id_results = [','.join(itemid_results_list[n:n+20]) for n in list(range(0,
len(itemid_results_list), 20))]
return item_id_results
# TODO instead of running through multiple try except loops try to implement set methods for efficiency and ease. Remember symmetric_difference, difference, intersection, set()
# for category_id in cat_list:
class ShoppingApi:
'''
Creates objects from ShoppingApi service calls that can interact with
pandas dataframes
'''
def get_item_from_findItemsByCategory(self, twenty_id):
'''
Gets raw JSON data from multiple live listings given multiple itemIds
'''
params = {
"callname":"GetMultipleItems",
"appid":"scottbea-xlister-PRD-6796e0ff6-14862949",
"version":"671",
"responseencoding":"JSON",
"ItemID":twenty_id,
"IncludeSelector":"ItemSpecifics",
}
response = requests.get("https://open.api.ebay.com/shopping?", params=params)
response = response.json()
response = response['Item']
return response
def conky(self):
'''
For some reason item_id_results can only be passed as argument in executor.map
if the variable is made within function
'''
data = [] # TODO I think you need to append a list of dictionaries rather than update a dictionary of dictionaries. Training var will require an updated dictionary though
finding = FindingApi(4, 2)
item_id_results = finding.get_ids_from_cats()
with concurrent.futures.ThreadPoolExecutor() as executor:
for future in executor.map(self.get_item_from_findItemsByCategory, item_id_results):
# print(future)
for item in future:
data.append(item) # The end result should be a list of dicts where each dict in the list is a listing
# data.update(future)
return data # TODO each future is a list of dictionaries because the output of any multithreader in this method is a list.
# data dictionary can't update from list of dicts unless iterated over. Might need a different way to update.
# TODO It seems like the problem with updating the dictionary/csv file is starting here possibly; I think the item data is getting appended out of order from the item itself.
class CurateData:
'''
Contains functions for curating data for machine learning training sets;
Takes item in data from ShoppingApi request as argument and extracts/ creates key
value pairs that gets updated to custom dataframe used in Ml training sets.
'''
def import_raw(self):
with open('raw_data.txt') as f:
raw_data = json.load(f)
return raw_data
def data_frame(self, data):
to_json = json.dumps(data)
raw_df = pd.read_json(to_json)
return raw_df
def to_training(self, data):
raw_df = self.data_frame(data)
interm_df1 = raw_df.loc[:, ['ItemID', 'PictureURL', 'PrimaryCategoryID', 'PrimaryCategoryName', 'Title', 'ItemSpecifics']]
interm_df1[['ItemID', 'PrimaryCAegoryID']] = interm_df1[['ItemID', 'PrimaryCategoryID']].astype(str)
training = interm_df1
return training
def nvl_dict(self, training):
interm_df1 = pd.Series(training.ItemSpecifics)
interm_df1 = interm_df1.apply(lambda x: x['NameValueList'])
nvl_dict = interm_df1.apply(lambda x: {k:v for (k, v) in zip([n['Name'] for n in x], [v['Value'] for v in x])})
return nvl_dict
def update_df(self, data):
'''
Creates training instances for dataset. picture_url_list expanded to
max available pictures with each picture url corresponding to features
in common with same listing (i.e., because there are multiple pictures
per listing, each picture will be its own training instance.
'''
# USE combination of apply() and dict comprehension to extract your custom nvl_dict from nvl in each cell
# USE training.apply(func, axis= something) to create your custom nvl_dict for each cell
# USE raw_df.loc[:, ['col1', col2', 'col3', 'etc']] for creating new df. There may be another way though.
# USE pd.merge() at some point...possibly after expanding lists and nvl
# USE pd.concat([1st df, 2nd df], sort=False) to combine dfs and later into larger csv files. You can transform each new raw_df first before combining it with the previous transformed
# df. then you can take the raw_df and combine it with the old raw_df for backup.
# TODO You will have to mess around more with pandas df to find a better solution to creating your csv file: i.e., create dataframe from from instances, run through process to customize your df
# for final training set for your ml model training. Contemplate on the future... you want ability to update main csv AND training csv; one for updating raw data instances from search queries, and
# the other for updating your training set.
def main():
'''
Main program creates/updates a csv file to use for ML training from live
ebay listings
'''
pass
# main goes here:
if __name__ == "__main__":
main()
# Limited to 5000 calls to shopping api per day, and getMultpileitems service maxes out at 20 items
# per call leaving you 100,000 items per day for you pandas dataframe initially. So you'll have
# to divide these up into the categories. This will leave you with about 6.25K results per cat.
# More than enough data for your dataset.
# for future reference, to deal with inconsistent values in the nvl (due to sellers inputting custom values in the fields) you can drop either listings or k/v pairs that are unique which
# can be determined from applying a function to determine frequency of k/v pairs--> list of unique k/v pairs--> function to determine frequency of unique k/v pairs--> drop those that have 1.
# TODO NEED TO ADD TRY EXCEPT CONDITIONS FOR EVERY CALL MADE TO API SERVICES TO
# TO AVOID HICCUPS WHEN CREATING DATASET
# TODO YOU WILL HAVE TO FIND A WAY OF COLLECTING DATA FOR IMAGES OF TAGS EITHER USING YOUR OWN TAGS OR SOMEHOW FIND A WAY TO FIND TAGS ON OTHERS LISTINGS. CRUCIAL FOR THE LISTINGS PROCESS. May be as simple as adding a def to one of the apis to extract only the picture if it can identify what a tag looks like. So, it may actually be a good thing to include all the pictures in a training set but then when you're ready to begin training you'll have a data cleaning pipeline specific to training a model to either learn shoe features or information on tags.