import json import requests import pandas as pd with open('cat_list.txt') as jf: cat_list = json.load(jf) big_data = pd.read_csv('big_data.csv') class FindingApi: '''Some docstring to get rid of linting errors''' def __init__(self, service, pageNumber): self.service = [ 'findItemsAdvanced', 'findCompletedItems', 'findItemsByKeywords', 'findItemsIneBayStores', 'findItemsByCategory', 'findItemsByProduct' ][service] self.pageNumber = list(range(1, pageNumber)) # 64 pages is recommended # this will give equal weights to cats given call restraints # departments = ["3034","93427"] (womens and mens) def get_data(self): for category_id in cat_list: for i in self.pageNumber: params = { "OPERATION-NAME":self.service, "SECURITY-APPNAME":"scottbea-xlister-PRD-6796e0ff6-14862949", "SERVICE-VERSION":"1.13.0", "RESPONSE-DATA-FORMAT":"JSON", "categoryId":category_id, "paginationInput.entriesPerPage":"100", "paginationInput.PageNumber":i } response = requests.get("https://svcs.ebay.com/services/search/FindingService/v1", params=params) data = response.json() return data def get_ids_from_cats(self): ''' get_ids_from cats creates a 20-itemId list to use for the ShoppingApi call ''' itemid_results_list = [] for category_id in cat_list: for i in self.pageNumber: params = { "OPERATION-NAME":self.service, "SECURITY-APPNAME":"scottbea-xlister-PRD-6796e0ff6-14862949", "SERVICE-VERSION":"1.13.0", "RESPONSE-DATA-FORMAT":"JSON", "categoryId":category_id, "paginationInput.entriesPerPage":"100", "paginationInput.PageNumber":i } response = requests.get("https://svcs.ebay.com/services/search/FindingService/v1", params=params) data = response.json() for item in data['findItemsByCategoryResponse'][0]['searchResult'][0]['item']: if item not in big_data.values: itemid_results_list.append(item['itemId'][0]) # itemId # values are in lists for some reason item_id_results = [','.join(itemid_results_list[n:n+20]) for n in list(range(0, len(itemid_results_list), 20))] return item_id_results class ShoppingApi(FindingApi): ''' Creates objects from ShoppingApi service calls that can interact with pandas dataframes ''' def get_item_from_findItemsByCategory(self, item_id_results): for twenty_id in item_id_results: params = { "callname":"GetMultipleItems", "appid":"scottbea-xlister-PRD-6796e0ff6-14862949", "version":"671", "responseencoding":"JSON", "ItemID":twenty_id, "IncludeSelector":"ItemSpecifics", } response = requests.get("https://open.api.ebay.com/shopping?", params=params) data = response.json() names = [] values = [] nvl = data['Item'][0]['ItemSpecifics']['NameValueList'] for nvl_dict in nvl: names.append(nvl_dict['Name']) values.append(nvl_dict['Value']) nvl_dict = dict(zip(names, values)) data.update(nvl_dict) df = pd.json_normalize(data) df.to_csv('big_data.csv') # Limited to 5000 calls to shopping api per day, and getMultpileitems service maxes out at 20 items # per call leaving you 100,000 items per day for you pandas dataframe initially. So you'll have # to divide these up into the categories. This will leave you with about 6.25K results per cat. # More than enough data for your dataset. # Need to make sure dataframe gets important stuff outside of nvl. Also need to # change init method in findingapi to have variable pages and possibly variable # services.