commit before checkout 428e0379ef
for ref
This commit is contained in:
parent
525f46cc34
commit
7d8be32ba8
@ -1,471 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "572dc7fb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from matplotlib.image import imread\n",
|
||||
"import pandas as pd\n",
|
||||
"from collections import Counter\n",
|
||||
"import json\n",
|
||||
"import os\n",
|
||||
"import re\n",
|
||||
"import tempfile\n",
|
||||
"import numpy as np\n",
|
||||
"from os.path import exists\n",
|
||||
"from imblearn.under_sampling import RandomUnderSampler\n",
|
||||
"from PIL import ImageFile\n",
|
||||
"import sklearn as sk\n",
|
||||
"from sklearn.model_selection import train_test_split, StratifiedShuffleSplit\n",
|
||||
"import tensorflow as tf\n",
|
||||
"import tensorflow.keras\n",
|
||||
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
|
||||
"from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten, Activation\n",
|
||||
"from tensorflow.keras.models import Sequential\n",
|
||||
"from tensorflow.keras.optimizers import Adam\n",
|
||||
"# custom modules\n",
|
||||
"import image_faults\n",
|
||||
"\n",
|
||||
"ImageFile.LOAD_TRUNCATED_IMAGES = True"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def add_regularization(model, regularizer=tf.keras.regularizers.l2(0.0001)):\n",
|
||||
"\n",
|
||||
" if not isinstance(regularizer, tf.keras.regularizers.Regularizer):\n",
|
||||
" print(\"Regularizer must be a subclass of tf.keras.regularizers.Regularizer\")\n",
|
||||
" return model\n",
|
||||
"\n",
|
||||
" for layer in model.layers:\n",
|
||||
" for attr in ['kernel_regularizer']:\n",
|
||||
" if hasattr(layer, attr):\n",
|
||||
" setattr(layer, attr, regularizer)\n",
|
||||
"\n",
|
||||
" # When we change the layers attributes, the change only happens in the model config file\n",
|
||||
" model_json = model.to_json()\n",
|
||||
"\n",
|
||||
" # Save the weights before reloading the model.\n",
|
||||
" tmp_weights_path = os.path.join(tempfile.gettempdir(), 'tmp_weights.h5')\n",
|
||||
" model.save_weights(tmp_weights_path)\n",
|
||||
"\n",
|
||||
" # load the model from the config\n",
|
||||
" model = tf.keras.models.model_from_json(model_json)\n",
|
||||
" \n",
|
||||
" # Reload the model weights\n",
|
||||
" model.load_weights(tmp_weights_path, by_name=True)\n",
|
||||
" return model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "a5c72863",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# image_faults.faulty_images() # removes faulty images\n",
|
||||
"df = pd.read_csv('expanded_class.csv', index_col=[0], low_memory=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "1057a442",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{source:target} dictionary created @ /tf/training_images\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"def dict_pics():\n",
|
||||
" target_dir = os.getcwd() + os.sep + \"training_images\"\n",
|
||||
" with open('temp_pics_source_list.txt') as f:\n",
|
||||
" temp_pics_source_list = json.load(f)\n",
|
||||
" dict_pics = {k:target_dir + os.sep + re.search(r'[^/]+(?=/\\$_|.jpg)', k, re.IGNORECASE).group() + '.jpg' for k in temp_pics_source_list}\n",
|
||||
" print(\"{source:target} dictionary created @ \" + target_dir)\n",
|
||||
" return dict_pics\n",
|
||||
"\n",
|
||||
"dict_pics = dict_pics()\n",
|
||||
"blah = pd.Series(df.PictureURL)\n",
|
||||
"df = df.drop(labels=['PictureURL'], axis=1)\n",
|
||||
"blah = blah.apply(lambda x: dict_pics[x])\n",
|
||||
"df = pd.concat([blah, df],axis=1)\n",
|
||||
"df = df.groupby('PrimaryCategoryID').filter(lambda x: len(x)>25) # removes cat outliers\n",
|
||||
"# removes non-existent image paths"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "7a6146e6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df['PrimaryCategoryID'] = df['PrimaryCategoryID'].astype(str) # pandas thinks ids are ints\n",
|
||||
"\n",
|
||||
"df=df.sample(frac=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"undersample = RandomUnderSampler(sampling_strategy='auto')\n",
|
||||
"train, y_under = undersample.fit_resample(df, df['PrimaryCategoryID'])\n",
|
||||
"# print(Counter(train['PrimaryCategoryID']))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "506aa5cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train, test = train_test_split(train, test_size=0.1, random_state=42)\n",
|
||||
"# stratify=train['PrimaryCategoryID']\n",
|
||||
"# train['PrimaryCategoryID'].value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "4d72eb90",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Found 5110 validated image filenames belonging to 13 classes.\n",
|
||||
"Found 1277 validated image filenames belonging to 13 classes.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/usr/local/lib/python3.8/dist-packages/keras_preprocessing/image/dataframe_iterator.py:279: UserWarning: Found 1 invalid image filename(s) in x_col=\"PictureURL\". These filename(s) will be ignored.\n",
|
||||
" warnings.warn(\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"datagen = ImageDataGenerator(rescale=1./255., \n",
|
||||
" validation_split=.2,\n",
|
||||
" #samplewise_std_normalization=True,\n",
|
||||
" #horizontal_flip= True,\n",
|
||||
" #vertical_flip= True,\n",
|
||||
" #width_shift_range= 0.2,\n",
|
||||
" #height_shift_range= 0.2,\n",
|
||||
" #rotation_range= 90,\n",
|
||||
" preprocessing_function=tf.keras.applications.vgg16.preprocess_input)\n",
|
||||
"train_generator=datagen.flow_from_dataframe(\n",
|
||||
" dataframe=train[:len(train)],\n",
|
||||
" directory='./training_images',\n",
|
||||
" x_col='PictureURL',\n",
|
||||
" y_col='PrimaryCategoryID',\n",
|
||||
" batch_size=32,\n",
|
||||
" seed=42,\n",
|
||||
" shuffle=True,\n",
|
||||
" target_size=(224,224),\n",
|
||||
" subset='training'\n",
|
||||
" )\n",
|
||||
"validation_generator=datagen.flow_from_dataframe(\n",
|
||||
" dataframe=train[:len(train)], # is using train right?\n",
|
||||
" directory='./training_images',\n",
|
||||
" x_col='PictureURL',\n",
|
||||
" y_col='PrimaryCategoryID',\n",
|
||||
" batch_size=32,\n",
|
||||
" seed=42,\n",
|
||||
" shuffle=True,\n",
|
||||
" target_size=(224,224),\n",
|
||||
" subset='validation'\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "7b70f37f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"imgs, labels = next(train_generator)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "1ed54bf5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def plotImages(images_arr):\n",
|
||||
" fig, axes = plt.subplots(1, 10, figsize=(20,20))\n",
|
||||
" axes = axes.flatten()\n",
|
||||
" for img, ax in zip( images_arr, axes):\n",
|
||||
" ax.imshow(img)\n",
|
||||
" ax.axis('off')\n",
|
||||
" plt.tight_layout()\n",
|
||||
" plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "85934565",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#plotImages(imgs)\n",
|
||||
"#print(labels)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "6322bcad",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"physical_devices = tf.config.list_physical_devices('GPU')\n",
|
||||
"print(len(physical_devices))\n",
|
||||
"tf.config.experimental.set_memory_growth(physical_devices[0], True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "07fd25c6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# see https://www.kaggle.com/dmitrypukhov/cnn-with-imagedatagenerator-flow-from-dataframe for train/test/val split \n",
|
||||
"# example\n",
|
||||
"\n",
|
||||
"# may need to either create a test dataset from the original dataset or just download a new one"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "b31af79e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vgg19_model = tf.keras.applications.vgg16.VGG16(weights='imagenet')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "fe06f2bf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = Sequential()\n",
|
||||
"for layer in vgg19_model.layers[:-1]:\n",
|
||||
" model.add(layer)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "7d3cc82c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for layer in model.layers:\n",
|
||||
" layer.trainable = True"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "ea620129",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#model.add(Dropout(.5))\n",
|
||||
"#model.add(Dense(64, activation='softmax'))\n",
|
||||
"# model.add(Dropout(.25))\n",
|
||||
"model.add(Dense(units=13, activation='softmax'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "c774d787",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = add_regularization(model)\n",
|
||||
"#model.summary()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"id": "fd5d1246",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.compile(optimizer=Adam(learning_rate=1e-5), loss='categorical_crossentropy',\n",
|
||||
" metrics=['accuracy'])\n",
|
||||
"# sparse_categorical_crossentropy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"id": "9cd2ba27",
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Epoch 1/30\n",
|
||||
"160/160 [==============================] - 59s 360ms/step - loss: 2.7627 - accuracy: 0.1125 - val_loss: 2.7406 - val_accuracy: 0.1237\n",
|
||||
"Epoch 2/30\n",
|
||||
"160/160 [==============================] - 56s 351ms/step - loss: 2.7151 - accuracy: 0.1399 - val_loss: 2.7219 - val_accuracy: 0.1402\n",
|
||||
"Epoch 3/30\n",
|
||||
"160/160 [==============================] - 56s 351ms/step - loss: 2.6875 - accuracy: 0.1566 - val_loss: 2.6897 - val_accuracy: 0.1629\n",
|
||||
"Epoch 4/30\n",
|
||||
"160/160 [==============================] - 56s 353ms/step - loss: 2.6820 - accuracy: 0.1726 - val_loss: 2.6867 - val_accuracy: 0.1684\n",
|
||||
"Epoch 5/30\n",
|
||||
"160/160 [==============================] - 57s 355ms/step - loss: 2.6579 - accuracy: 0.1771 - val_loss: 2.6919 - val_accuracy: 0.1558\n",
|
||||
"Epoch 6/30\n",
|
||||
"160/160 [==============================] - 56s 353ms/step - loss: 2.6361 - accuracy: 0.1994 - val_loss: 2.6813 - val_accuracy: 0.1832\n",
|
||||
"Epoch 7/30\n",
|
||||
"160/160 [==============================] - 56s 352ms/step - loss: 2.6196 - accuracy: 0.2084 - val_loss: 2.6592 - val_accuracy: 0.1950\n",
|
||||
"Epoch 8/30\n",
|
||||
"160/160 [==============================] - 57s 353ms/step - loss: 2.6031 - accuracy: 0.2172 - val_loss: 2.6693 - val_accuracy: 0.1770\n",
|
||||
"Epoch 9/30\n",
|
||||
"160/160 [==============================] - 57s 355ms/step - loss: 2.5878 - accuracy: 0.2274 - val_loss: 2.6543 - val_accuracy: 0.2091\n",
|
||||
"Epoch 10/30\n",
|
||||
"160/160 [==============================] - 56s 350ms/step - loss: 2.5687 - accuracy: 0.2450 - val_loss: 2.6551 - val_accuracy: 0.1942\n",
|
||||
"Epoch 11/30\n",
|
||||
"160/160 [==============================] - 57s 354ms/step - loss: 2.5543 - accuracy: 0.2568 - val_loss: 2.6591 - val_accuracy: 0.2020\n",
|
||||
"Epoch 12/30\n",
|
||||
"160/160 [==============================] - 56s 352ms/step - loss: 2.5403 - accuracy: 0.2685 - val_loss: 2.6513 - val_accuracy: 0.1973\n",
|
||||
"Epoch 13/30\n",
|
||||
"160/160 [==============================] - 56s 352ms/step - loss: 2.5311 - accuracy: 0.2695 - val_loss: 2.6445 - val_accuracy: 0.2060\n",
|
||||
"Epoch 14/30\n",
|
||||
"160/160 [==============================] - 56s 351ms/step - loss: 2.5217 - accuracy: 0.2775 - val_loss: 2.6476 - val_accuracy: 0.2044\n",
|
||||
"Epoch 15/30\n",
|
||||
"160/160 [==============================] - 56s 351ms/step - loss: 2.5147 - accuracy: 0.2830 - val_loss: 2.6419 - val_accuracy: 0.2036\n",
|
||||
"Epoch 16/30\n",
|
||||
"160/160 [==============================] - 56s 351ms/step - loss: 2.5084 - accuracy: 0.2851 - val_loss: 2.6396 - val_accuracy: 0.2200\n",
|
||||
"Epoch 17/30\n",
|
||||
"160/160 [==============================] - 56s 348ms/step - loss: 2.5025 - accuracy: 0.2879 - val_loss: 2.6463 - val_accuracy: 0.2302\n",
|
||||
"Epoch 18/30\n",
|
||||
"160/160 [==============================] - 56s 350ms/step - loss: 2.4971 - accuracy: 0.2918 - val_loss: 2.6346 - val_accuracy: 0.2208\n",
|
||||
"Epoch 19/30\n",
|
||||
"160/160 [==============================] - 56s 353ms/step - loss: 2.4924 - accuracy: 0.2967 - val_loss: 2.6366 - val_accuracy: 0.2208\n",
|
||||
"Epoch 20/30\n",
|
||||
"160/160 [==============================] - 57s 354ms/step - loss: 2.4882 - accuracy: 0.2988 - val_loss: 2.6317 - val_accuracy: 0.2271\n",
|
||||
"Epoch 21/30\n",
|
||||
"160/160 [==============================] - 56s 349ms/step - loss: 2.4854 - accuracy: 0.3004 - val_loss: 2.6431 - val_accuracy: 0.2240\n",
|
||||
"Epoch 22/30\n",
|
||||
"160/160 [==============================] - 56s 352ms/step - loss: 2.4784 - accuracy: 0.3068 - val_loss: 2.6345 - val_accuracy: 0.2114\n",
|
||||
"Epoch 23/30\n",
|
||||
"160/160 [==============================] - 57s 354ms/step - loss: 2.4722 - accuracy: 0.3106 - val_loss: 2.6276 - val_accuracy: 0.2294\n",
|
||||
"Epoch 24/30\n",
|
||||
"160/160 [==============================] - 57s 354ms/step - loss: 2.4687 - accuracy: 0.3100 - val_loss: 2.6383 - val_accuracy: 0.2177\n",
|
||||
"Epoch 25/30\n",
|
||||
"160/160 [==============================] - 57s 354ms/step - loss: 2.4649 - accuracy: 0.3108 - val_loss: 2.6322 - val_accuracy: 0.2122\n",
|
||||
"Epoch 26/30\n",
|
||||
"160/160 [==============================] - 57s 354ms/step - loss: 2.4644 - accuracy: 0.3141 - val_loss: 2.6243 - val_accuracy: 0.2247\n",
|
||||
"Epoch 27/30\n",
|
||||
"160/160 [==============================] - 56s 352ms/step - loss: 2.4599 - accuracy: 0.3188 - val_loss: 2.6332 - val_accuracy: 0.2138\n",
|
||||
"Epoch 28/30\n",
|
||||
"160/160 [==============================] - 57s 353ms/step - loss: 2.4550 - accuracy: 0.3229 - val_loss: 2.6287 - val_accuracy: 0.2232\n",
|
||||
"Epoch 29/30\n",
|
||||
"160/160 [==============================] - 57s 354ms/step - loss: 2.4502 - accuracy: 0.3217 - val_loss: 2.6216 - val_accuracy: 0.2287\n",
|
||||
"Epoch 30/30\n",
|
||||
"160/160 [==============================] - 56s 351ms/step - loss: 2.4506 - accuracy: 0.3190 - val_loss: 2.6329 - val_accuracy: 0.1793\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<keras.callbacks.History at 0x7f7803569ac0>"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model.fit(x=train_generator,\n",
|
||||
" steps_per_epoch=len(train_generator),\n",
|
||||
" validation_data=validation_generator,\n",
|
||||
" validation_steps=len(validation_generator),\n",
|
||||
" epochs=30,\n",
|
||||
" verbose=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "63f791af",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.10"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
2787
Shoe Classifier_InceptionResNetV2.ipynb
Normal file
2787
Shoe Classifier_InceptionResNetV2.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
529
Shoe Classifier_VGG16.ipynb
Normal file
529
Shoe Classifier_VGG16.ipynb
Normal file
@ -0,0 +1,529 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "572dc7fb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from matplotlib.image import imread\n",
|
||||
"import pandas as pd\n",
|
||||
"from collections import Counter\n",
|
||||
"import json\n",
|
||||
"import os\n",
|
||||
"import re\n",
|
||||
"import tempfile\n",
|
||||
"import numpy as np\n",
|
||||
"from os.path import exists\n",
|
||||
"from imblearn.under_sampling import RandomUnderSampler\n",
|
||||
"from PIL import ImageFile\n",
|
||||
"import sklearn as sk\n",
|
||||
"from sklearn.model_selection import train_test_split, StratifiedShuffleSplit\n",
|
||||
"import tensorflow as tf\n",
|
||||
"import tensorflow.keras\n",
|
||||
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
|
||||
"from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten, Activation\n",
|
||||
"from tensorflow.keras.models import Sequential\n",
|
||||
"from tensorflow.keras.optimizers import Adam\n",
|
||||
"# custom modules\n",
|
||||
"import image_faults\n",
|
||||
"\n",
|
||||
"ImageFile.LOAD_TRUNCATED_IMAGES = True"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def add_regularization(model, regularizer=tf.keras.regularizers.l2(0.0001)):\n",
|
||||
"\n",
|
||||
" if not isinstance(regularizer, tf.keras.regularizers.Regularizer):\n",
|
||||
" print(\"Regularizer must be a subclass of tf.keras.regularizers.Regularizer\")\n",
|
||||
" return model\n",
|
||||
"\n",
|
||||
" for layer in model.layers:\n",
|
||||
" for attr in ['kernel_regularizer']:\n",
|
||||
" if hasattr(layer, attr):\n",
|
||||
" setattr(layer, attr, regularizer)\n",
|
||||
"\n",
|
||||
" # When we change the layers attributes, the change only happens in the model config file\n",
|
||||
" model_json = model.to_json()\n",
|
||||
"\n",
|
||||
" # Save the weights before reloading the model.\n",
|
||||
" tmp_weights_path = os.path.join(tempfile.gettempdir(), 'tmp_weights.h5')\n",
|
||||
" model.save_weights(tmp_weights_path)\n",
|
||||
"\n",
|
||||
" # load the model from the config\n",
|
||||
" model = tf.keras.models.model_from_json(model_json)\n",
|
||||
" \n",
|
||||
" # Reload the model weights\n",
|
||||
" model.load_weights(tmp_weights_path, by_name=True)\n",
|
||||
" return model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "a5c72863",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# image_faults.faulty_images() # removes faulty images\n",
|
||||
"df = pd.read_csv('expanded_class.csv', index_col=[0], low_memory=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "1057a442",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{source:target} dictionary created @ /tf/training_images\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"def dict_pics():\n",
|
||||
" target_dir = os.getcwd() + os.sep + \"training_images\"\n",
|
||||
" with open('temp_pics_source_list.txt') as f:\n",
|
||||
" temp_pics_source_list = json.load(f)\n",
|
||||
" dict_pics = {k:target_dir + os.sep + re.search(r'[^/]+(?=/\\$_|.jpg)', k, re.IGNORECASE).group() + '.jpg' for k in temp_pics_source_list}\n",
|
||||
" print(\"{source:target} dictionary created @ \" + target_dir)\n",
|
||||
" return dict_pics\n",
|
||||
"\n",
|
||||
"dict_pics = dict_pics()\n",
|
||||
"blah = pd.Series(df.PictureURL)\n",
|
||||
"df = df.drop(labels=['PictureURL'], axis=1)\n",
|
||||
"blah = blah.apply(lambda x: dict_pics[x])\n",
|
||||
"df = pd.concat([blah, df],axis=1)\n",
|
||||
"df = df.groupby('PrimaryCategoryID').filter(lambda x: len(x)>25) # removes cat outliers\n",
|
||||
"# removes non-existent image paths"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "7a6146e6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df['PrimaryCategoryID'] = df['PrimaryCategoryID'].astype(str) # pandas thinks ids are ints\n",
|
||||
"\n",
|
||||
"df=df.sample(frac=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Counter({'11498': 546, '11504': 546, '11505': 546, '11632': 546, '15709': 546, '24087': 546, '45333': 546, '53120': 546, '53548': 546, '53557': 546, '55793': 546, '62107': 546, '95672': 546})\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"undersample = RandomUnderSampler(sampling_strategy='auto')\n",
|
||||
"train, y_under = undersample.fit_resample(df, df['PrimaryCategoryID'])\n",
|
||||
"print(Counter(train['PrimaryCategoryID']))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "506aa5cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train, test = train_test_split(train, test_size=0.2, random_state=42)\n",
|
||||
"# stratify=train['PrimaryCategoryID']\n",
|
||||
"# train['PrimaryCategoryID'].value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "4d72eb90",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Found 4542 validated image filenames belonging to 13 classes.\n",
|
||||
"Found 1135 validated image filenames belonging to 13 classes.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/usr/local/lib/python3.8/dist-packages/keras_preprocessing/image/dataframe_iterator.py:279: UserWarning: Found 1 invalid image filename(s) in x_col=\"PictureURL\". These filename(s) will be ignored.\n",
|
||||
" warnings.warn(\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"datagen = ImageDataGenerator(rescale=1./255., \n",
|
||||
" validation_split=.2,\n",
|
||||
" #samplewise_std_normalization=True,\n",
|
||||
" #horizontal_flip= True,\n",
|
||||
" #vertical_flip= True,\n",
|
||||
" #width_shift_range= 0.2,\n",
|
||||
" #height_shift_range= 0.2,\n",
|
||||
" #rotation_range= 90,\n",
|
||||
" preprocessing_function=tf.keras.applications.vgg16.preprocess_input)\n",
|
||||
"train_generator=datagen.flow_from_dataframe(\n",
|
||||
" dataframe=train[:len(train)],\n",
|
||||
" directory='./training_images',\n",
|
||||
" x_col='PictureURL',\n",
|
||||
" y_col='PrimaryCategoryID',\n",
|
||||
" batch_size=32,\n",
|
||||
" seed=42,\n",
|
||||
" shuffle=True,\n",
|
||||
" target_size=(244,244),\n",
|
||||
" subset='training'\n",
|
||||
" )\n",
|
||||
"validation_generator=datagen.flow_from_dataframe(\n",
|
||||
" dataframe=train[:len(train)], # is using train right?\n",
|
||||
" directory='./training_images',\n",
|
||||
" x_col='PictureURL',\n",
|
||||
" y_col='PrimaryCategoryID',\n",
|
||||
" batch_size=32,\n",
|
||||
" seed=42,\n",
|
||||
" shuffle=True,\n",
|
||||
" target_size=(244,244),\n",
|
||||
" subset='validation'\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "7b70f37f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"imgs, labels = next(train_generator)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "1ed54bf5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def plotImages(images_arr):\n",
|
||||
" fig, axes = plt.subplots(1, 10, figsize=(20,20))\n",
|
||||
" axes = axes.flatten()\n",
|
||||
" for img, ax in zip( images_arr, axes):\n",
|
||||
" ax.imshow(img)\n",
|
||||
" ax.axis('off')\n",
|
||||
" plt.tight_layout()\n",
|
||||
" plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "85934565",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#plotImages(imgs)\n",
|
||||
"#print(labels)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "6322bcad",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"physical_devices = tf.config.list_physical_devices('GPU')\n",
|
||||
"print(len(physical_devices))\n",
|
||||
"tf.config.experimental.set_memory_growth(physical_devices[0], True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "b31af79e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"base_model = tf.keras.applications.vgg16.VGG16(weights='imagenet')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "fe06f2bf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#model = Sequential()\n",
|
||||
"#for layer in base_model.layers[:-1]:\n",
|
||||
"# model.add(layer)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "7d3cc82c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# loop through layers, add Dropout after layers 'fc1' and 'fc2'\n",
|
||||
"updated_model = Sequential()\n",
|
||||
"for layer in base_model.layers[:-1]:\n",
|
||||
" updated_model.add(layer)\n",
|
||||
" if layer.name in ['fc1', 'fc2']:\n",
|
||||
" updated_model.add(Dropout(.75))\n",
|
||||
"\n",
|
||||
"model = updated_model\n",
|
||||
"\n",
|
||||
"for layer in model.layers:\n",
|
||||
" layer.trainable = True\n",
|
||||
"\n",
|
||||
"model.add(Dense(units=13, activation='softmax'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "c774d787",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Model: \"sequential\"\n",
|
||||
"_________________________________________________________________\n",
|
||||
" Layer (type) Output Shape Param # \n",
|
||||
"=================================================================\n",
|
||||
" block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 \n",
|
||||
" \n",
|
||||
" block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 \n",
|
||||
" \n",
|
||||
" block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 \n",
|
||||
" \n",
|
||||
" block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 \n",
|
||||
" \n",
|
||||
" block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 \n",
|
||||
" \n",
|
||||
" block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 \n",
|
||||
" \n",
|
||||
" block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 \n",
|
||||
" \n",
|
||||
" block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 \n",
|
||||
" \n",
|
||||
" block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 \n",
|
||||
" \n",
|
||||
" block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 \n",
|
||||
" \n",
|
||||
" block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 \n",
|
||||
" \n",
|
||||
" block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 \n",
|
||||
" \n",
|
||||
" block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 \n",
|
||||
" \n",
|
||||
" block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 \n",
|
||||
" \n",
|
||||
" block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 \n",
|
||||
" \n",
|
||||
" block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 \n",
|
||||
" \n",
|
||||
" block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 \n",
|
||||
" \n",
|
||||
" block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 \n",
|
||||
" \n",
|
||||
" flatten (Flatten) (None, 25088) 0 \n",
|
||||
" \n",
|
||||
" fc1 (Dense) (None, 4096) 102764544 \n",
|
||||
" \n",
|
||||
" dropout (Dropout) (None, 4096) 0 \n",
|
||||
" \n",
|
||||
" fc2 (Dense) (None, 4096) 16781312 \n",
|
||||
" \n",
|
||||
" dropout_1 (Dropout) (None, 4096) 0 \n",
|
||||
" \n",
|
||||
" dense (Dense) (None, 13) 53261 \n",
|
||||
" \n",
|
||||
"=================================================================\n",
|
||||
"Total params: 134,313,805\n",
|
||||
"Trainable params: 134,313,805\n",
|
||||
"Non-trainable params: 0\n",
|
||||
"_________________________________________________________________\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#model = add_regularization(model)\n",
|
||||
"model.summary()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "fd5d1246",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.compile(optimizer=Adam(learning_rate=.0001), loss='categorical_crossentropy',\n",
|
||||
" metrics=['accuracy'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "9cd2ba27",
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Epoch 1/30\n",
|
||||
"142/142 [==============================] - 62s 404ms/step - loss: 2.7986 - accuracy: 0.0771 - val_loss: 2.5716 - val_accuracy: 0.0670\n",
|
||||
"Epoch 2/30\n",
|
||||
"142/142 [==============================] - 53s 370ms/step - loss: 2.6351 - accuracy: 0.0790 - val_loss: 2.5728 - val_accuracy: 0.0802\n",
|
||||
"Epoch 3/30\n",
|
||||
"142/142 [==============================] - 53s 370ms/step - loss: 2.6157 - accuracy: 0.0852 - val_loss: 2.5786 - val_accuracy: 0.0705\n",
|
||||
"Epoch 4/30\n",
|
||||
"142/142 [==============================] - 53s 371ms/step - loss: 2.6087 - accuracy: 0.0821 - val_loss: 2.5501 - val_accuracy: 0.1013\n",
|
||||
"Epoch 5/30\n",
|
||||
"142/142 [==============================] - 53s 371ms/step - loss: 2.5420 - accuracy: 0.1182 - val_loss: 2.4237 - val_accuracy: 0.1401\n",
|
||||
"Epoch 6/30\n",
|
||||
"142/142 [==============================] - 52s 368ms/step - loss: 2.4275 - accuracy: 0.1640 - val_loss: 2.3050 - val_accuracy: 0.1982\n",
|
||||
"Epoch 7/30\n",
|
||||
"142/142 [==============================] - 52s 368ms/step - loss: 2.3270 - accuracy: 0.2008 - val_loss: 2.2103 - val_accuracy: 0.2273\n",
|
||||
"Epoch 8/30\n",
|
||||
"142/142 [==============================] - 54s 378ms/step - loss: 2.2011 - accuracy: 0.2294 - val_loss: 2.0607 - val_accuracy: 0.2872\n",
|
||||
"Epoch 9/30\n",
|
||||
"142/142 [==============================] - 54s 378ms/step - loss: 2.0790 - accuracy: 0.2781 - val_loss: 1.9376 - val_accuracy: 0.3419\n",
|
||||
"Epoch 10/30\n",
|
||||
"142/142 [==============================] - 52s 368ms/step - loss: 1.8708 - accuracy: 0.3417 - val_loss: 2.0407 - val_accuracy: 0.3198\n",
|
||||
"Epoch 11/30\n",
|
||||
"142/142 [==============================] - 52s 368ms/step - loss: 1.7588 - accuracy: 0.3743 - val_loss: 1.8968 - val_accuracy: 0.3401\n",
|
||||
"Epoch 12/30\n",
|
||||
"142/142 [==============================] - 52s 369ms/step - loss: 1.5927 - accuracy: 0.4251 - val_loss: 1.8735 - val_accuracy: 0.3542\n",
|
||||
"Epoch 13/30\n",
|
||||
"142/142 [==============================] - 53s 369ms/step - loss: 1.4704 - accuracy: 0.4626 - val_loss: 1.8489 - val_accuracy: 0.3753\n",
|
||||
"Epoch 14/30\n",
|
||||
"142/142 [==============================] - 52s 367ms/step - loss: 1.2452 - accuracy: 0.5484 - val_loss: 1.9595 - val_accuracy: 0.3656\n",
|
||||
"Epoch 15/30\n",
|
||||
"142/142 [==============================] - 52s 370ms/step - loss: 1.1410 - accuracy: 0.5885 - val_loss: 1.9159 - val_accuracy: 0.3930\n",
|
||||
"Epoch 16/30\n",
|
||||
"142/142 [==============================] - 52s 367ms/step - loss: 0.9705 - accuracy: 0.6510 - val_loss: 2.1161 - val_accuracy: 0.3921\n",
|
||||
"Epoch 17/30\n",
|
||||
"142/142 [==============================] - 52s 368ms/step - loss: 0.7992 - accuracy: 0.7041 - val_loss: 2.1271 - val_accuracy: 0.4097\n",
|
||||
"Epoch 18/30\n",
|
||||
"142/142 [==============================] - 52s 369ms/step - loss: 0.7544 - accuracy: 0.7305 - val_loss: 2.0093 - val_accuracy: 0.4361\n",
|
||||
"Epoch 19/30\n",
|
||||
"142/142 [==============================] - 52s 367ms/step - loss: 0.5651 - accuracy: 0.7961 - val_loss: 2.4199 - val_accuracy: 0.3850\n",
|
||||
"Epoch 20/30\n",
|
||||
"142/142 [==============================] - 52s 366ms/step - loss: 0.4566 - accuracy: 0.8342 - val_loss: 2.4058 - val_accuracy: 0.4352\n",
|
||||
"Epoch 21/30\n",
|
||||
"142/142 [==============================] - 52s 364ms/step - loss: 0.3841 - accuracy: 0.8622 - val_loss: 2.5407 - val_accuracy: 0.4141\n",
|
||||
"Epoch 22/30\n",
|
||||
"142/142 [==============================] - 52s 366ms/step - loss: 0.2496 - accuracy: 0.9086 - val_loss: 3.0696 - val_accuracy: 0.4088\n",
|
||||
"Epoch 23/30\n",
|
||||
"142/142 [==============================] - 52s 368ms/step - loss: 0.2847 - accuracy: 0.8985 - val_loss: 2.7929 - val_accuracy: 0.4273\n",
|
||||
"Epoch 24/30\n",
|
||||
"142/142 [==============================] - 52s 369ms/step - loss: 0.2035 - accuracy: 0.9293 - val_loss: 3.0300 - val_accuracy: 0.4132\n",
|
||||
"Epoch 25/30\n",
|
||||
"142/142 [==============================] - ETA: 0s - loss: 0.1872 - accuracy: 0.9377"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "KeyboardInterrupt",
|
||||
"evalue": "",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-18-4cd4443bbf2a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m model.fit(x=train_generator,\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_generator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mvalidation_data\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvalidation_generator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mvalidation_steps\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalidation_generator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# pylint: disable=broad-except\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[1;32m 1250\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1251\u001b[0m steps_per_execution=self._steps_per_execution)\n\u001b[0;32m-> 1252\u001b[0;31m val_logs = self.evaluate(\n\u001b[0m\u001b[1;32m 1253\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mval_x\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1254\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mval_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# pylint: disable=broad-except\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mevaluate\u001b[0;34m(self, x, y, batch_size, verbose, sample_weight, steps, callbacks, max_queue_size, workers, use_multiprocessing, return_dict, **kwargs)\u001b[0m\n\u001b[1;32m 1535\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofiler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'test'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstep_num\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_r\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1536\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_test_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1537\u001b[0;31m \u001b[0mtmp_logs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtest_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1538\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1539\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/util/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 150\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 151\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 908\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 909\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mOptionalXlaContext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jit_compile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 910\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 911\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 912\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 947\u001b[0m \u001b[0;31m# In this case we have not created variables on the first call. So we can\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 948\u001b[0m \u001b[0;31m# run the first trace but we should fail if variables are created.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 949\u001b[0;31m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateful_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 950\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_created_variables\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mALLOW_DYNAMIC_VARIABLE_CREATION\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 951\u001b[0m raise ValueError(\"Creating variables on a non-first call to a function\"\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 3128\u001b[0m (graph_function,\n\u001b[1;32m 3129\u001b[0m filtered_flat_args) = self._maybe_define_function(args, kwargs)\n\u001b[0;32m-> 3130\u001b[0;31m return graph_function._call_flat(\n\u001b[0m\u001b[1;32m 3131\u001b[0m filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access\n\u001b[1;32m 3132\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[0;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[1;32m 1957\u001b[0m and executing_eagerly):\n\u001b[1;32m 1958\u001b[0m \u001b[0;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1959\u001b[0;31m return self._build_call_outputs(self._inference_function.call(\n\u001b[0m\u001b[1;32m 1960\u001b[0m ctx, args, cancellation_manager=cancellation_manager))\n\u001b[1;32m 1961\u001b[0m forward_backward = self._select_forward_and_backward_functions(\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[1;32m 596\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0m_InterpolateFunctionError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 597\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcancellation_manager\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 598\u001b[0;31m outputs = execute.execute(\n\u001b[0m\u001b[1;32m 599\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msignature\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 600\u001b[0m \u001b[0mnum_outputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_outputs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 58\u001b[0;31m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0m\u001b[1;32m 59\u001b[0m inputs, attrs, num_outputs)\n\u001b[1;32m 60\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model.fit(x=train_generator,\n",
|
||||
" steps_per_epoch=len(train_generator),\n",
|
||||
" validation_data=validation_generator,\n",
|
||||
" validation_steps=len(validation_generator),\n",
|
||||
" epochs=30,\n",
|
||||
" verbose=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "63f791af",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.10"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -10,13 +10,17 @@
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from matplotlib.image import imread\n",
|
||||
"import pandas as pd\n",
|
||||
"from collections import Counter\n",
|
||||
"import json\n",
|
||||
"import os\n",
|
||||
"import re\n",
|
||||
"import tempfile\n",
|
||||
"import numpy as np\n",
|
||||
"from os.path import exists\n",
|
||||
"from imblearn.under_sampling import RandomUnderSampler\n",
|
||||
"from PIL import ImageFile\n",
|
||||
"#import sklearn as sk\n",
|
||||
"import sklearn as sk\n",
|
||||
"from sklearn.model_selection import train_test_split, StratifiedShuffleSplit\n",
|
||||
"import tensorflow as tf\n",
|
||||
"import tensorflow.keras\n",
|
||||
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
|
||||
@ -32,6 +36,38 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def add_regularization(model, regularizer=tf.keras.regularizers.l2(0.0001)):\n",
|
||||
"\n",
|
||||
" if not isinstance(regularizer, tf.keras.regularizers.Regularizer):\n",
|
||||
" print(\"Regularizer must be a subclass of tf.keras.regularizers.Regularizer\")\n",
|
||||
" return model\n",
|
||||
"\n",
|
||||
" for layer in model.layers:\n",
|
||||
" for attr in ['kernel_regularizer']:\n",
|
||||
" if hasattr(layer, attr):\n",
|
||||
" setattr(layer, attr, regularizer)\n",
|
||||
"\n",
|
||||
" # When we change the layers attributes, the change only happens in the model config file\n",
|
||||
" model_json = model.to_json()\n",
|
||||
"\n",
|
||||
" # Save the weights before reloading the model.\n",
|
||||
" tmp_weights_path = os.path.join(tempfile.gettempdir(), 'tmp_weights.h5')\n",
|
||||
" model.save_weights(tmp_weights_path)\n",
|
||||
"\n",
|
||||
" # load the model from the config\n",
|
||||
" model = tf.keras.models.model_from_json(model_json)\n",
|
||||
" \n",
|
||||
" # Reload the model weights\n",
|
||||
" model.load_weights(tmp_weights_path, by_name=True)\n",
|
||||
" return model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "a5c72863",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -42,7 +78,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"id": "1057a442",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
@ -76,7 +112,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 5,
|
||||
"id": "7a6146e6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -88,7 +124,38 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Counter({'11498': 3913, '11504': 3913, '11505': 3913, '11632': 3913, '15709': 3913, '24087': 3913, '45333': 3913, '53120': 3913, '53548': 3913, '53557': 3913, '55793': 3913, '62107': 3913, '95672': 3913})\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"undersample = RandomUnderSampler(sampling_strategy='auto')\n",
|
||||
"train, y_under = undersample.fit_resample(df, df['PrimaryCategoryID'])\n",
|
||||
"#print(Counter(train['PrimaryCategoryID']))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "506aa5cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train, test = train_test_split(train, test_size=0.2, random_state=42)\n",
|
||||
"# stratify=train['PrimaryCategoryID']\n",
|
||||
"# train['PrimaryCategoryID'].value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "4d72eb90",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -96,56 +163,56 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Found 6217 validated image filenames belonging to 13 classes.\n",
|
||||
"Found 2664 validated image filenames belonging to 13 classes.\n"
|
||||
"Found 32547 validated image filenames belonging to 13 classes.\n",
|
||||
"Found 8136 validated image filenames belonging to 13 classes.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/usr/local/lib/python3.8/dist-packages/keras_preprocessing/image/dataframe_iterator.py:279: UserWarning: Found 1 invalid image filename(s) in x_col=\"PictureURL\". These filename(s) will be ignored.\n",
|
||||
"/usr/local/lib/python3.8/dist-packages/keras_preprocessing/image/dataframe_iterator.py:279: UserWarning: Found 12 invalid image filename(s) in x_col=\"PictureURL\". These filename(s) will be ignored.\n",
|
||||
" warnings.warn(\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"datagen = ImageDataGenerator(rescale=1./255., \n",
|
||||
" validation_split=.3,\n",
|
||||
" #featurewise_std_normalization=True,\n",
|
||||
" validation_split=.2,\n",
|
||||
" #samplewise_std_normalization=True,\n",
|
||||
" #horizontal_flip= True,\n",
|
||||
" #vertical_flip= True,\n",
|
||||
" #width_shift_range= 0.2,\n",
|
||||
" #height_shift_range= 0.2,\n",
|
||||
" #rotation_range= 180,\n",
|
||||
" #rotation_range= 90,\n",
|
||||
" preprocessing_function=tf.keras.applications.vgg16.preprocess_input)\n",
|
||||
"train_generator=datagen.flow_from_dataframe(\n",
|
||||
" dataframe=df[:len(df)],\n",
|
||||
" dataframe=train[:len(train)],\n",
|
||||
" directory='./training_images',\n",
|
||||
" x_col='PictureURL',\n",
|
||||
" y_col='PrimaryCategoryID',\n",
|
||||
" batch_size=32,\n",
|
||||
" seed=42,\n",
|
||||
" shuffle=True,\n",
|
||||
" target_size=(224,224),\n",
|
||||
" target_size=(244,244),\n",
|
||||
" subset='training'\n",
|
||||
" )\n",
|
||||
"validation_generator=datagen.flow_from_dataframe(\n",
|
||||
" dataframe=df[:len(df)],\n",
|
||||
" dataframe=train[:len(train)], # is using train right?\n",
|
||||
" directory='./training_images',\n",
|
||||
" x_col='PictureURL',\n",
|
||||
" y_col='PrimaryCategoryID',\n",
|
||||
" batch_size=32,\n",
|
||||
" seed=42,\n",
|
||||
" shuffle=True,\n",
|
||||
" target_size=(224,224),\n",
|
||||
" target_size=(244,244),\n",
|
||||
" subset='validation'\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 9,
|
||||
"id": "7b70f37f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -155,7 +222,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 10,
|
||||
"id": "1ed54bf5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -172,7 +239,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 11,
|
||||
"id": "85934565",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -183,7 +250,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 12,
|
||||
"id": "6322bcad",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -203,88 +270,47 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "07fd25c6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# see https://www.kaggle.com/dmitrypukhov/cnn-with-imagedatagenerator-flow-from-dataframe for train/test/val split \n",
|
||||
"# example\n",
|
||||
"\n",
|
||||
"# may need to either create a test dataset from the original dataset or just download a new one"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 14,
|
||||
"id": "b31af79e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vgg16_model = tf.keras.applications.vgg16.VGG16(weights='imagenet')\n",
|
||||
"#weights='imagenet'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "fe06f2bf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = Sequential()\n",
|
||||
"for layer in vgg16_model.layers[:-1]:\n",
|
||||
" model.add(layer)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "7d3cc82c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for layer in model.layers:\n",
|
||||
" layer.trainable = True"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "ea620129",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.add(Dense(units=13, activation='softmax'))"
|
||||
"base_model = tf.keras.applications.vgg19.VGG19(weights='imagenet')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "c774d787",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"id": "fe06f2bf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#model.summary()"
|
||||
"model = Sequential()\n",
|
||||
"for layer in base_model.layers[:-1]:\n",
|
||||
" model.add(layer)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "fd5d1246",
|
||||
"id": "7d3cc82c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy',\n",
|
||||
" metrics=['accuracy'])"
|
||||
"for layer in model.layers:\n",
|
||||
" layer.trainable = True\n",
|
||||
" \n",
|
||||
"#model.add(Dropout(.5))\n",
|
||||
"#model.add(Dense(64, activation='softmax'))\n",
|
||||
"# model.add(Dropout(.25))\n",
|
||||
"\n",
|
||||
"model.add(Dense(units=13, activation='softmax'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "9cd2ba27",
|
||||
"execution_count": 18,
|
||||
"id": "c774d787",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
@ -293,97 +319,115 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Epoch 1/100\n",
|
||||
"195/195 - 83s - loss: 2.5928 - accuracy: 0.1139 - val_loss: 2.3657 - val_accuracy: 0.1674 - 83s/epoch - 426ms/step\n",
|
||||
"Epoch 2/100\n",
|
||||
"195/195 - 77s - loss: 2.1473 - accuracy: 0.2582 - val_loss: 1.9276 - val_accuracy: 0.3281 - 77s/epoch - 394ms/step\n",
|
||||
"Epoch 3/100\n",
|
||||
"195/195 - 78s - loss: 1.7234 - accuracy: 0.3973 - val_loss: 1.6724 - val_accuracy: 0.4050 - 78s/epoch - 400ms/step\n",
|
||||
"Epoch 4/100\n",
|
||||
"195/195 - 78s - loss: 1.4692 - accuracy: 0.4843 - val_loss: 1.5583 - val_accuracy: 0.4662 - 78s/epoch - 402ms/step\n",
|
||||
"Epoch 5/100\n",
|
||||
"195/195 - 79s - loss: 1.2598 - accuracy: 0.5477 - val_loss: 1.5135 - val_accuracy: 0.4944 - 79s/epoch - 403ms/step\n",
|
||||
"Epoch 6/100\n",
|
||||
"195/195 - 79s - loss: 1.0220 - accuracy: 0.6376 - val_loss: 1.5566 - val_accuracy: 0.4962 - 79s/epoch - 404ms/step\n",
|
||||
"Epoch 7/100\n",
|
||||
"195/195 - 78s - loss: 0.8021 - accuracy: 0.7084 - val_loss: 1.7647 - val_accuracy: 0.4711 - 78s/epoch - 398ms/step\n",
|
||||
"Epoch 8/100\n",
|
||||
"195/195 - 78s - loss: 0.5998 - accuracy: 0.7804 - val_loss: 1.8439 - val_accuracy: 0.4869 - 78s/epoch - 400ms/step\n",
|
||||
"Epoch 9/100\n",
|
||||
"195/195 - 77s - loss: 0.3910 - accuracy: 0.8631 - val_loss: 2.1197 - val_accuracy: 0.4872 - 77s/epoch - 397ms/step\n",
|
||||
"Epoch 10/100\n",
|
||||
"195/195 - 78s - loss: 0.2600 - accuracy: 0.9094 - val_loss: 2.3586 - val_accuracy: 0.4703 - 78s/epoch - 402ms/step\n",
|
||||
"Epoch 11/100\n",
|
||||
"195/195 - 77s - loss: 0.2066 - accuracy: 0.9279 - val_loss: 2.5012 - val_accuracy: 0.4632 - 77s/epoch - 397ms/step\n",
|
||||
"Epoch 12/100\n",
|
||||
"195/195 - 77s - loss: 0.1266 - accuracy: 0.9571 - val_loss: 2.5961 - val_accuracy: 0.4854 - 77s/epoch - 395ms/step\n",
|
||||
"Epoch 13/100\n",
|
||||
"195/195 - 77s - loss: 0.1098 - accuracy: 0.9648 - val_loss: 2.9123 - val_accuracy: 0.4602 - 77s/epoch - 395ms/step\n",
|
||||
"Epoch 14/100\n",
|
||||
"195/195 - 77s - loss: 0.0794 - accuracy: 0.9744 - val_loss: 2.9060 - val_accuracy: 0.4752 - 77s/epoch - 395ms/step\n",
|
||||
"Epoch 15/100\n",
|
||||
"195/195 - 77s - loss: 0.1061 - accuracy: 0.9656 - val_loss: 2.7269 - val_accuracy: 0.4658 - 77s/epoch - 396ms/step\n",
|
||||
"Epoch 16/100\n",
|
||||
"195/195 - 77s - loss: 0.0908 - accuracy: 0.9712 - val_loss: 2.9450 - val_accuracy: 0.4621 - 77s/epoch - 396ms/step\n",
|
||||
"Epoch 17/100\n",
|
||||
"195/195 - 77s - loss: 0.0820 - accuracy: 0.9736 - val_loss: 2.8900 - val_accuracy: 0.4703 - 77s/epoch - 396ms/step\n",
|
||||
"Epoch 18/100\n",
|
||||
"195/195 - 77s - loss: 0.0827 - accuracy: 0.9722 - val_loss: 2.9304 - val_accuracy: 0.4745 - 77s/epoch - 395ms/step\n",
|
||||
"Epoch 19/100\n",
|
||||
"195/195 - 77s - loss: 0.0726 - accuracy: 0.9757 - val_loss: 3.2673 - val_accuracy: 0.4580 - 77s/epoch - 393ms/step\n",
|
||||
"Epoch 20/100\n",
|
||||
"195/195 - 77s - loss: 0.0560 - accuracy: 0.9821 - val_loss: 3.0101 - val_accuracy: 0.4670 - 77s/epoch - 394ms/step\n",
|
||||
"Epoch 21/100\n",
|
||||
"195/195 - 77s - loss: 0.0355 - accuracy: 0.9907 - val_loss: 3.2575 - val_accuracy: 0.4568 - 77s/epoch - 395ms/step\n",
|
||||
"Epoch 22/100\n",
|
||||
"195/195 - 78s - loss: 0.0950 - accuracy: 0.9693 - val_loss: 3.0716 - val_accuracy: 0.4568 - 78s/epoch - 399ms/step\n",
|
||||
"Epoch 23/100\n",
|
||||
"195/195 - 78s - loss: 0.0307 - accuracy: 0.9910 - val_loss: 3.6348 - val_accuracy: 0.4741 - 78s/epoch - 401ms/step\n",
|
||||
"Epoch 24/100\n",
|
||||
"195/195 - 77s - loss: 0.0315 - accuracy: 0.9903 - val_loss: 3.2422 - val_accuracy: 0.4711 - 77s/epoch - 396ms/step\n",
|
||||
"Epoch 25/100\n",
|
||||
"195/195 - 78s - loss: 0.0640 - accuracy: 0.9789 - val_loss: 3.5402 - val_accuracy: 0.4298 - 78s/epoch - 402ms/step\n",
|
||||
"Epoch 26/100\n",
|
||||
"195/195 - 78s - loss: 0.0916 - accuracy: 0.9715 - val_loss: 3.1916 - val_accuracy: 0.4520 - 78s/epoch - 399ms/step\n",
|
||||
"Epoch 27/100\n",
|
||||
"195/195 - 77s - loss: 0.0634 - accuracy: 0.9799 - val_loss: 3.2234 - val_accuracy: 0.4602 - 77s/epoch - 394ms/step\n",
|
||||
"Epoch 28/100\n",
|
||||
"195/195 - 78s - loss: 0.0673 - accuracy: 0.9788 - val_loss: 3.4435 - val_accuracy: 0.4647 - 78s/epoch - 400ms/step\n",
|
||||
"Epoch 29/100\n",
|
||||
"195/195 - 78s - loss: 0.0440 - accuracy: 0.9870 - val_loss: 3.3068 - val_accuracy: 0.4598 - 78s/epoch - 400ms/step\n",
|
||||
"Epoch 30/100\n",
|
||||
"195/195 - 78s - loss: 0.0165 - accuracy: 0.9950 - val_loss: 3.6233 - val_accuracy: 0.4681 - 78s/epoch - 401ms/step\n",
|
||||
"Epoch 31/100\n",
|
||||
"195/195 - 79s - loss: 0.0303 - accuracy: 0.9910 - val_loss: 3.7398 - val_accuracy: 0.4572 - 79s/epoch - 403ms/step\n",
|
||||
"Epoch 32/100\n",
|
||||
"195/195 - 78s - loss: 0.0554 - accuracy: 0.9815 - val_loss: 3.5560 - val_accuracy: 0.4369 - 78s/epoch - 399ms/step\n",
|
||||
"Epoch 33/100\n",
|
||||
"195/195 - 78s - loss: 0.0556 - accuracy: 0.9829 - val_loss: 3.6555 - val_accuracy: 0.4610 - 78s/epoch - 401ms/step\n",
|
||||
"Epoch 34/100\n",
|
||||
"195/195 - 78s - loss: 0.0624 - accuracy: 0.9809 - val_loss: 3.3500 - val_accuracy: 0.4617 - 78s/epoch - 401ms/step\n",
|
||||
"Epoch 35/100\n",
|
||||
"195/195 - 77s - loss: 0.0367 - accuracy: 0.9886 - val_loss: 3.5968 - val_accuracy: 0.4625 - 77s/epoch - 394ms/step\n",
|
||||
"Epoch 36/100\n",
|
||||
"195/195 - 78s - loss: 0.0301 - accuracy: 0.9912 - val_loss: 3.5188 - val_accuracy: 0.4643 - 78s/epoch - 399ms/step\n",
|
||||
"Epoch 37/100\n",
|
||||
"195/195 - 79s - loss: 0.0491 - accuracy: 0.9850 - val_loss: 3.3079 - val_accuracy: 0.4471 - 79s/epoch - 403ms/step\n",
|
||||
"Epoch 38/100\n",
|
||||
"195/195 - 78s - loss: 0.0577 - accuracy: 0.9821 - val_loss: 3.4042 - val_accuracy: 0.4381 - 78s/epoch - 400ms/step\n",
|
||||
"Epoch 39/100\n",
|
||||
"195/195 - 78s - loss: 0.0431 - accuracy: 0.9878 - val_loss: 3.4389 - val_accuracy: 0.4550 - 78s/epoch - 399ms/step\n",
|
||||
"Epoch 40/100\n",
|
||||
"195/195 - 77s - loss: 0.0218 - accuracy: 0.9940 - val_loss: 3.1989 - val_accuracy: 0.4854 - 77s/epoch - 397ms/step\n",
|
||||
"Epoch 41/100\n",
|
||||
"195/195 - 77s - loss: 0.0296 - accuracy: 0.9921 - val_loss: 3.2759 - val_accuracy: 0.4651 - 77s/epoch - 394ms/step\n",
|
||||
"Epoch 42/100\n",
|
||||
"195/195 - 78s - loss: 0.0176 - accuracy: 0.9947 - val_loss: 3.2391 - val_accuracy: 0.4745 - 78s/epoch - 398ms/step\n",
|
||||
"Epoch 43/100\n",
|
||||
"195/195 - 79s - loss: 0.0099 - accuracy: 0.9965 - val_loss: 3.5696 - val_accuracy: 0.4553 - 79s/epoch - 405ms/step\n",
|
||||
"Epoch 44/100\n",
|
||||
"195/195 - 78s - loss: 0.0516 - accuracy: 0.9852 - val_loss: 3.3857 - val_accuracy: 0.4482 - 78s/epoch - 402ms/step\n",
|
||||
"Epoch 45/100\n",
|
||||
"195/195 - 79s - loss: 0.0412 - accuracy: 0.9860 - val_loss: 3.3717 - val_accuracy: 0.4580 - 79s/epoch - 404ms/step\n",
|
||||
"Epoch 46/100\n"
|
||||
"Model: \"sequential\"\n",
|
||||
"_________________________________________________________________\n",
|
||||
" Layer (type) Output Shape Param # \n",
|
||||
"=================================================================\n",
|
||||
" block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 \n",
|
||||
" \n",
|
||||
" block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 \n",
|
||||
" \n",
|
||||
" block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 \n",
|
||||
" \n",
|
||||
" block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 \n",
|
||||
" \n",
|
||||
" block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 \n",
|
||||
" \n",
|
||||
" block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 \n",
|
||||
" \n",
|
||||
" block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 \n",
|
||||
" \n",
|
||||
" block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 \n",
|
||||
" \n",
|
||||
" block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 \n",
|
||||
" \n",
|
||||
" block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 \n",
|
||||
" \n",
|
||||
" block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 \n",
|
||||
" \n",
|
||||
" block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 \n",
|
||||
" \n",
|
||||
" block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 \n",
|
||||
" \n",
|
||||
" block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 \n",
|
||||
" \n",
|
||||
" block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 \n",
|
||||
" \n",
|
||||
" block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 \n",
|
||||
" \n",
|
||||
" block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 \n",
|
||||
" \n",
|
||||
" block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 \n",
|
||||
" \n",
|
||||
" flatten (Flatten) (None, 25088) 0 \n",
|
||||
" \n",
|
||||
" fc1 (Dense) (None, 4096) 102764544 \n",
|
||||
" \n",
|
||||
" fc2 (Dense) (None, 4096) 16781312 \n",
|
||||
" \n",
|
||||
" dense (Dense) (None, 13) 53261 \n",
|
||||
" \n",
|
||||
"=================================================================\n",
|
||||
"Total params: 134,313,805\n",
|
||||
"Trainable params: 134,313,805\n",
|
||||
"Non-trainable params: 0\n",
|
||||
"_________________________________________________________________\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#model = add_regularization(model)\n",
|
||||
"model.summary()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "fd5d1246",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.compile(optimizer=Adam(learning_rate=.0001), loss='categorical_crossentropy',\n",
|
||||
" metrics=['accuracy'])\n",
|
||||
"# sparse_categorical_crossentropy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "9cd2ba27",
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Epoch 1/30\n",
|
||||
"1018/1018 [==============================] - 391s 379ms/step - loss: 2.4329 - accuracy: 0.1571 - val_loss: 2.1902 - val_accuracy: 0.2525\n",
|
||||
"Epoch 2/30\n",
|
||||
"1018/1018 [==============================] - 379s 373ms/step - loss: 2.0578 - accuracy: 0.2960 - val_loss: 1.9160 - val_accuracy: 0.3330\n",
|
||||
"Epoch 3/30\n",
|
||||
"1018/1018 [==============================] - 381s 374ms/step - loss: 1.8221 - accuracy: 0.3681 - val_loss: 1.8588 - val_accuracy: 0.3535\n",
|
||||
"Epoch 4/30\n",
|
||||
"1018/1018 [==============================] - 383s 376ms/step - loss: 1.6406 - accuracy: 0.4272 - val_loss: 1.7819 - val_accuracy: 0.4028\n",
|
||||
"Epoch 5/30\n",
|
||||
"1018/1018 [==============================] - 383s 376ms/step - loss: 1.4577 - accuracy: 0.4920 - val_loss: 1.7216 - val_accuracy: 0.4158\n",
|
||||
"Epoch 6/30\n",
|
||||
"1018/1018 [==============================] - 379s 372ms/step - loss: 1.2528 - accuracy: 0.5607 - val_loss: 1.7924 - val_accuracy: 0.4140\n",
|
||||
"Epoch 7/30\n",
|
||||
"1018/1018 [==============================] - 378s 371ms/step - loss: 1.0030 - accuracy: 0.6469 - val_loss: 1.8017 - val_accuracy: 0.4303\n",
|
||||
"Epoch 8/30\n",
|
||||
"1018/1018 [==============================] - 379s 372ms/step - loss: 0.7405 - accuracy: 0.7420 - val_loss: 1.9863 - val_accuracy: 0.4453\n",
|
||||
"Epoch 9/30\n",
|
||||
"1018/1018 [==============================] - 379s 372ms/step - loss: 0.4704 - accuracy: 0.8354 - val_loss: 2.3988 - val_accuracy: 0.4263\n",
|
||||
"Epoch 10/30\n",
|
||||
"1018/1018 [==============================] - 379s 372ms/step - loss: 0.3059 - accuracy: 0.8944 - val_loss: 2.7526 - val_accuracy: 0.4303\n",
|
||||
"Epoch 11/30\n",
|
||||
"1018/1018 [==============================] - 377s 371ms/step - loss: 0.2160 - accuracy: 0.9278 - val_loss: 3.0618 - val_accuracy: 0.4250\n",
|
||||
"Epoch 12/30\n",
|
||||
" 437/1018 [===========>..................] - ETA: 2:53 - loss: 0.1370 - accuracy: 0.9536"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -393,7 +437,7 @@
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-17-1a4715fb06ea>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m model.fit(x=train_generator,\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_generator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mvalidation_data\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvalidation_generator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mvalidation_steps\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalidation_generator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m<ipython-input-20-4cd4443bbf2a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m model.fit(x=train_generator,\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_generator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mvalidation_data\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvalidation_generator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mvalidation_steps\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalidation_generator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# pylint: disable=broad-except\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[1;32m 1214\u001b[0m _r=1):\n\u001b[1;32m 1215\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1216\u001b[0;31m \u001b[0mtmp_logs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1217\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1218\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/util/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 150\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 151\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
@ -412,8 +456,8 @@
|
||||
" steps_per_epoch=len(train_generator),\n",
|
||||
" validation_data=validation_generator,\n",
|
||||
" validation_steps=len(validation_generator),\n",
|
||||
" epochs=100,\n",
|
||||
" verbose=2)"
|
||||
" epochs=30,\n",
|
||||
" verbose=1)"
|
||||
]
|
||||
},
|
||||
{
|
857
Shoe Classifier_Xception.ipynb
Normal file
857
Shoe Classifier_Xception.ipynb
Normal file
@ -0,0 +1,857 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "572dc7fb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from matplotlib.image import imread\n",
|
||||
"import pandas as pd\n",
|
||||
"from collections import Counter\n",
|
||||
"import json\n",
|
||||
"import os\n",
|
||||
"import re\n",
|
||||
"import tempfile\n",
|
||||
"import numpy as np\n",
|
||||
"from os.path import exists\n",
|
||||
"from imblearn.under_sampling import RandomUnderSampler\n",
|
||||
"from PIL import ImageFile\n",
|
||||
"import sklearn as sk\n",
|
||||
"from sklearn.model_selection import train_test_split, StratifiedShuffleSplit\n",
|
||||
"import tensorflow as tf\n",
|
||||
"import tensorflow.keras\n",
|
||||
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
|
||||
"from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten, Activation\n",
|
||||
"from tensorflow.keras.models import Sequential\n",
|
||||
"from tensorflow.keras.optimizers import Adam\n",
|
||||
"# custom modules\n",
|
||||
"import image_faults\n",
|
||||
"\n",
|
||||
"ImageFile.LOAD_TRUNCATED_IMAGES = True"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "8d94196d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def add_regularization(model, regularizer=tf.keras.regularizers.l2(0.0001)):\n",
|
||||
"\n",
|
||||
" if not isinstance(regularizer, tf.keras.regularizers.Regularizer):\n",
|
||||
" print(\"Regularizer must be a subclass of tf.keras.regularizers.Regularizer\")\n",
|
||||
" return model\n",
|
||||
"\n",
|
||||
" for layer in model.layers:\n",
|
||||
" for attr in ['kernel_regularizer']:\n",
|
||||
" if hasattr(layer, attr):\n",
|
||||
" setattr(layer, attr, regularizer)\n",
|
||||
"\n",
|
||||
" # When we change the layers attributes, the change only happens in the model config file\n",
|
||||
" model_json = model.to_json()\n",
|
||||
"\n",
|
||||
" # Save the weights before reloading the model.\n",
|
||||
" tmp_weights_path = os.path.join(tempfile.gettempdir(), 'tmp_weights.h5')\n",
|
||||
" model.save_weights(tmp_weights_path)\n",
|
||||
"\n",
|
||||
" # load the model from the config\n",
|
||||
" model = tf.keras.models.model_from_json(model_json)\n",
|
||||
" \n",
|
||||
" # Reload the model weights\n",
|
||||
" model.load_weights(tmp_weights_path, by_name=True)\n",
|
||||
" return model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "a5c72863",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# image_faults.faulty_images() # removes faulty images\n",
|
||||
"df = pd.read_csv('expanded_class.csv', index_col=[0], low_memory=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "1057a442",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{source:target} dictionary created @ /tf/training_images\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"def dict_pics():\n",
|
||||
" target_dir = os.getcwd() + os.sep + \"training_images\"\n",
|
||||
" with open('temp_pics_source_list.txt') as f:\n",
|
||||
" temp_pics_source_list = json.load(f)\n",
|
||||
" dict_pics = {k:target_dir + os.sep + re.search(r'[^/]+(?=/\\$_|.jpg)', k, re.IGNORECASE).group() + '.jpg' for k in temp_pics_source_list}\n",
|
||||
" print(\"{source:target} dictionary created @ \" + target_dir)\n",
|
||||
" return dict_pics\n",
|
||||
"\n",
|
||||
"dict_pics = dict_pics()\n",
|
||||
"blah = pd.Series(df.PictureURL)\n",
|
||||
"df = df.drop(labels=['PictureURL'], axis=1)\n",
|
||||
"blah = blah.apply(lambda x: dict_pics[x])\n",
|
||||
"df = pd.concat([blah, df],axis=1)\n",
|
||||
"df = df.groupby('PrimaryCategoryID').filter(lambda x: len(x)>25) # removes cat outliers\n",
|
||||
"# removes non-existent image paths"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "7a6146e6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df['PrimaryCategoryID'] = df['PrimaryCategoryID'].astype(str) # pandas thinks ids are ints\n",
|
||||
"\n",
|
||||
"df=df.sample(frac=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "114cc3c0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"undersample = RandomUnderSampler(sampling_strategy='auto')\n",
|
||||
"train, y_under = undersample.fit_resample(df, df['PrimaryCategoryID'])\n",
|
||||
"#print(Counter(train['PrimaryCategoryID']))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "506aa5cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train, test = train_test_split(train, test_size=0.1, random_state=42)\n",
|
||||
"# stratify=train['PrimaryCategoryID']\n",
|
||||
"# train['PrimaryCategoryID'].value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "4d72eb90",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Found 5110 validated image filenames belonging to 13 classes.\n",
|
||||
"Found 1277 validated image filenames belonging to 13 classes.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/usr/local/lib/python3.8/dist-packages/keras_preprocessing/image/dataframe_iterator.py:279: UserWarning: Found 1 invalid image filename(s) in x_col=\"PictureURL\". These filename(s) will be ignored.\n",
|
||||
" warnings.warn(\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"datagen = ImageDataGenerator(rescale=1./255., \n",
|
||||
" validation_split=.2,\n",
|
||||
" #samplewise_std_normalization=True,\n",
|
||||
" #horizontal_flip= True,\n",
|
||||
" #vertical_flip= True,\n",
|
||||
" #width_shift_range= 0.2,\n",
|
||||
" #height_shift_range= 0.2,\n",
|
||||
" #rotation_range= 90,\n",
|
||||
" preprocessing_function=tf.keras.applications.xception.preprocess_input)\n",
|
||||
"train_generator=datagen.flow_from_dataframe(\n",
|
||||
" dataframe=train[:len(train)],\n",
|
||||
" directory='./training_images',\n",
|
||||
" x_col='PictureURL',\n",
|
||||
" y_col='PrimaryCategoryID',\n",
|
||||
" batch_size=64,\n",
|
||||
" seed=42,\n",
|
||||
" shuffle=True,\n",
|
||||
" target_size=(299,299),\n",
|
||||
" subset='training'\n",
|
||||
" )\n",
|
||||
"validation_generator=datagen.flow_from_dataframe(\n",
|
||||
" dataframe=train[:len(train)], # is using train right?\n",
|
||||
" directory='./training_images',\n",
|
||||
" x_col='PictureURL',\n",
|
||||
" y_col='PrimaryCategoryID',\n",
|
||||
" batch_size=64,\n",
|
||||
" seed=42,\n",
|
||||
" shuffle=True,\n",
|
||||
" target_size=(299,299),\n",
|
||||
" subset='validation'\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "7b70f37f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"imgs, labels = next(train_generator)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "1ed54bf5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def plotImages(images_arr):\n",
|
||||
" fig, axes = plt.subplots(1, 10, figsize=(20,20))\n",
|
||||
" axes = axes.flatten()\n",
|
||||
" for img, ax in zip( images_arr, axes):\n",
|
||||
" ax.imshow(img)\n",
|
||||
" ax.axis('off')\n",
|
||||
" plt.tight_layout()\n",
|
||||
" plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "85934565",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#plotImages(imgs)\n",
|
||||
"#print(labels)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "6322bcad",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"physical_devices = tf.config.list_physical_devices('GPU')\n",
|
||||
"print(len(physical_devices))\n",
|
||||
"tf.config.experimental.set_memory_growth(physical_devices[0], True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "07fd25c6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# see https://www.kaggle.com/dmitrypukhov/cnn-with-imagedatagenerator-flow-from-dataframe for train/test/val split \n",
|
||||
"# example\n",
|
||||
"\n",
|
||||
"# may need to either create a test dataset from the original dataset or just download a new one"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "b31af79e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"base_model = tf.keras.applications.xception.Xception(include_top=False, weights='imagenet', pooling='avg')\n",
|
||||
"#base_model.summary()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "fe06f2bf",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Model: \"model\"\n",
|
||||
"__________________________________________________________________________________________________\n",
|
||||
" Layer (type) Output Shape Param # Connected to \n",
|
||||
"==================================================================================================\n",
|
||||
" input_1 (InputLayer) [(None, None, None, 0 [] \n",
|
||||
" 3)] \n",
|
||||
" \n",
|
||||
" block1_conv1 (Conv2D) (None, None, None, 864 ['input_1[0][0]'] \n",
|
||||
" 32) \n",
|
||||
" \n",
|
||||
" block1_conv1_bn (BatchNormaliz (None, None, None, 128 ['block1_conv1[0][0]'] \n",
|
||||
" ation) 32) \n",
|
||||
" \n",
|
||||
" block1_conv1_act (Activation) (None, None, None, 0 ['block1_conv1_bn[0][0]'] \n",
|
||||
" 32) \n",
|
||||
" \n",
|
||||
" block1_conv2 (Conv2D) (None, None, None, 18432 ['block1_conv1_act[0][0]'] \n",
|
||||
" 64) \n",
|
||||
" \n",
|
||||
" block1_conv2_bn (BatchNormaliz (None, None, None, 256 ['block1_conv2[0][0]'] \n",
|
||||
" ation) 64) \n",
|
||||
" \n",
|
||||
" block1_conv2_act (Activation) (None, None, None, 0 ['block1_conv2_bn[0][0]'] \n",
|
||||
" 64) \n",
|
||||
" \n",
|
||||
" block2_sepconv1 (SeparableConv (None, None, None, 8768 ['block1_conv2_act[0][0]'] \n",
|
||||
" 2D) 128) \n",
|
||||
" \n",
|
||||
" block2_sepconv1_bn (BatchNorma (None, None, None, 512 ['block2_sepconv1[0][0]'] \n",
|
||||
" lization) 128) \n",
|
||||
" \n",
|
||||
" block2_sepconv2_act (Activatio (None, None, None, 0 ['block2_sepconv1_bn[0][0]'] \n",
|
||||
" n) 128) \n",
|
||||
" \n",
|
||||
" block2_sepconv2 (SeparableConv (None, None, None, 17536 ['block2_sepconv2_act[0][0]'] \n",
|
||||
" 2D) 128) \n",
|
||||
" \n",
|
||||
" block2_sepconv2_bn (BatchNorma (None, None, None, 512 ['block2_sepconv2[0][0]'] \n",
|
||||
" lization) 128) \n",
|
||||
" \n",
|
||||
" conv2d (Conv2D) (None, None, None, 8192 ['block1_conv2_act[0][0]'] \n",
|
||||
" 128) \n",
|
||||
" \n",
|
||||
" block2_pool (MaxPooling2D) (None, None, None, 0 ['block2_sepconv2_bn[0][0]'] \n",
|
||||
" 128) \n",
|
||||
" \n",
|
||||
" batch_normalization (BatchNorm (None, None, None, 512 ['conv2d[0][0]'] \n",
|
||||
" alization) 128) \n",
|
||||
" \n",
|
||||
" add (Add) (None, None, None, 0 ['block2_pool[0][0]', \n",
|
||||
" 128) 'batch_normalization[0][0]'] \n",
|
||||
" \n",
|
||||
" block3_sepconv1_act (Activatio (None, None, None, 0 ['add[0][0]'] \n",
|
||||
" n) 128) \n",
|
||||
" \n",
|
||||
" block3_sepconv1 (SeparableConv (None, None, None, 33920 ['block3_sepconv1_act[0][0]'] \n",
|
||||
" 2D) 256) \n",
|
||||
" \n",
|
||||
" block3_sepconv1_bn (BatchNorma (None, None, None, 1024 ['block3_sepconv1[0][0]'] \n",
|
||||
" lization) 256) \n",
|
||||
" \n",
|
||||
" block3_sepconv2_act (Activatio (None, None, None, 0 ['block3_sepconv1_bn[0][0]'] \n",
|
||||
" n) 256) \n",
|
||||
" \n",
|
||||
" block3_sepconv2 (SeparableConv (None, None, None, 67840 ['block3_sepconv2_act[0][0]'] \n",
|
||||
" 2D) 256) \n",
|
||||
" \n",
|
||||
" block3_sepconv2_bn (BatchNorma (None, None, None, 1024 ['block3_sepconv2[0][0]'] \n",
|
||||
" lization) 256) \n",
|
||||
" \n",
|
||||
" conv2d_1 (Conv2D) (None, None, None, 32768 ['add[0][0]'] \n",
|
||||
" 256) \n",
|
||||
" \n",
|
||||
" block3_pool (MaxPooling2D) (None, None, None, 0 ['block3_sepconv2_bn[0][0]'] \n",
|
||||
" 256) \n",
|
||||
" \n",
|
||||
" batch_normalization_1 (BatchNo (None, None, None, 1024 ['conv2d_1[0][0]'] \n",
|
||||
" rmalization) 256) \n",
|
||||
" \n",
|
||||
" add_1 (Add) (None, None, None, 0 ['block3_pool[0][0]', \n",
|
||||
" 256) 'batch_normalization_1[0][0]'] \n",
|
||||
" \n",
|
||||
" block4_sepconv1_act (Activatio (None, None, None, 0 ['add_1[0][0]'] \n",
|
||||
" n) 256) \n",
|
||||
" \n",
|
||||
" block4_sepconv1 (SeparableConv (None, None, None, 188672 ['block4_sepconv1_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block4_sepconv1_bn (BatchNorma (None, None, None, 2912 ['block4_sepconv1[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" block4_sepconv2_act (Activatio (None, None, None, 0 ['block4_sepconv1_bn[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block4_sepconv2 (SeparableConv (None, None, None, 536536 ['block4_sepconv2_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block4_sepconv2_bn (BatchNorma (None, None, None, 2912 ['block4_sepconv2[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" conv2d_2 (Conv2D) (None, None, None, 186368 ['add_1[0][0]'] \n",
|
||||
" 728) \n",
|
||||
" \n",
|
||||
" block4_pool (MaxPooling2D) (None, None, None, 0 ['block4_sepconv2_bn[0][0]'] \n",
|
||||
" 728) \n",
|
||||
" \n",
|
||||
" batch_normalization_2 (BatchNo (None, None, None, 2912 ['conv2d_2[0][0]'] \n",
|
||||
" rmalization) 728) \n",
|
||||
" \n",
|
||||
" add_2 (Add) (None, None, None, 0 ['block4_pool[0][0]', \n",
|
||||
" 728) 'batch_normalization_2[0][0]'] \n",
|
||||
" \n",
|
||||
" block5_sepconv1_act (Activatio (None, None, None, 0 ['add_2[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block5_sepconv1 (SeparableConv (None, None, None, 536536 ['block5_sepconv1_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block5_sepconv1_bn (BatchNorma (None, None, None, 2912 ['block5_sepconv1[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" block5_sepconv2_act (Activatio (None, None, None, 0 ['block5_sepconv1_bn[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block5_sepconv2 (SeparableConv (None, None, None, 536536 ['block5_sepconv2_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block5_sepconv2_bn (BatchNorma (None, None, None, 2912 ['block5_sepconv2[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" block5_sepconv3_act (Activatio (None, None, None, 0 ['block5_sepconv2_bn[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block5_sepconv3 (SeparableConv (None, None, None, 536536 ['block5_sepconv3_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block5_sepconv3_bn (BatchNorma (None, None, None, 2912 ['block5_sepconv3[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" add_3 (Add) (None, None, None, 0 ['block5_sepconv3_bn[0][0]', \n",
|
||||
" 728) 'add_2[0][0]'] \n",
|
||||
" \n",
|
||||
" block6_sepconv1_act (Activatio (None, None, None, 0 ['add_3[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block6_sepconv1 (SeparableConv (None, None, None, 536536 ['block6_sepconv1_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block6_sepconv1_bn (BatchNorma (None, None, None, 2912 ['block6_sepconv1[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" block6_sepconv2_act (Activatio (None, None, None, 0 ['block6_sepconv1_bn[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block6_sepconv2 (SeparableConv (None, None, None, 536536 ['block6_sepconv2_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block6_sepconv2_bn (BatchNorma (None, None, None, 2912 ['block6_sepconv2[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" block6_sepconv3_act (Activatio (None, None, None, 0 ['block6_sepconv2_bn[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block6_sepconv3 (SeparableConv (None, None, None, 536536 ['block6_sepconv3_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block6_sepconv3_bn (BatchNorma (None, None, None, 2912 ['block6_sepconv3[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" add_4 (Add) (None, None, None, 0 ['block6_sepconv3_bn[0][0]', \n",
|
||||
" 728) 'add_3[0][0]'] \n",
|
||||
" \n",
|
||||
" block7_sepconv1_act (Activatio (None, None, None, 0 ['add_4[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block7_sepconv1 (SeparableConv (None, None, None, 536536 ['block7_sepconv1_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block7_sepconv1_bn (BatchNorma (None, None, None, 2912 ['block7_sepconv1[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" block7_sepconv2_act (Activatio (None, None, None, 0 ['block7_sepconv1_bn[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block7_sepconv2 (SeparableConv (None, None, None, 536536 ['block7_sepconv2_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block7_sepconv2_bn (BatchNorma (None, None, None, 2912 ['block7_sepconv2[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" block7_sepconv3_act (Activatio (None, None, None, 0 ['block7_sepconv2_bn[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block7_sepconv3 (SeparableConv (None, None, None, 536536 ['block7_sepconv3_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block7_sepconv3_bn (BatchNorma (None, None, None, 2912 ['block7_sepconv3[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" add_5 (Add) (None, None, None, 0 ['block7_sepconv3_bn[0][0]', \n",
|
||||
" 728) 'add_4[0][0]'] \n",
|
||||
" \n",
|
||||
" block8_sepconv1_act (Activatio (None, None, None, 0 ['add_5[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block8_sepconv1 (SeparableConv (None, None, None, 536536 ['block8_sepconv1_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block8_sepconv1_bn (BatchNorma (None, None, None, 2912 ['block8_sepconv1[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" block8_sepconv2_act (Activatio (None, None, None, 0 ['block8_sepconv1_bn[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block8_sepconv2 (SeparableConv (None, None, None, 536536 ['block8_sepconv2_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block8_sepconv2_bn (BatchNorma (None, None, None, 2912 ['block8_sepconv2[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" block8_sepconv3_act (Activatio (None, None, None, 0 ['block8_sepconv2_bn[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block8_sepconv3 (SeparableConv (None, None, None, 536536 ['block8_sepconv3_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block8_sepconv3_bn (BatchNorma (None, None, None, 2912 ['block8_sepconv3[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" add_6 (Add) (None, None, None, 0 ['block8_sepconv3_bn[0][0]', \n",
|
||||
" 728) 'add_5[0][0]'] \n",
|
||||
" \n",
|
||||
" block9_sepconv1_act (Activatio (None, None, None, 0 ['add_6[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block9_sepconv1 (SeparableConv (None, None, None, 536536 ['block9_sepconv1_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block9_sepconv1_bn (BatchNorma (None, None, None, 2912 ['block9_sepconv1[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" block9_sepconv2_act (Activatio (None, None, None, 0 ['block9_sepconv1_bn[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block9_sepconv2 (SeparableConv (None, None, None, 536536 ['block9_sepconv2_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block9_sepconv2_bn (BatchNorma (None, None, None, 2912 ['block9_sepconv2[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" block9_sepconv3_act (Activatio (None, None, None, 0 ['block9_sepconv2_bn[0][0]'] \n",
|
||||
" n) 728) \n",
|
||||
" \n",
|
||||
" block9_sepconv3 (SeparableConv (None, None, None, 536536 ['block9_sepconv3_act[0][0]'] \n",
|
||||
" 2D) 728) \n",
|
||||
" \n",
|
||||
" block9_sepconv3_bn (BatchNorma (None, None, None, 2912 ['block9_sepconv3[0][0]'] \n",
|
||||
" lization) 728) \n",
|
||||
" \n",
|
||||
" add_7 (Add) (None, None, None, 0 ['block9_sepconv3_bn[0][0]', \n",
|
||||
" 728) 'add_6[0][0]'] \n",
|
||||
" \n",
|
||||
" block10_sepconv1_act (Activati (None, None, None, 0 ['add_7[0][0]'] \n",
|
||||
" on) 728) \n",
|
||||
" \n",
|
||||
" block10_sepconv1 (SeparableCon (None, None, None, 536536 ['block10_sepconv1_act[0][0]'] \n",
|
||||
" v2D) 728) \n",
|
||||
" \n",
|
||||
" block10_sepconv1_bn (BatchNorm (None, None, None, 2912 ['block10_sepconv1[0][0]'] \n",
|
||||
" alization) 728) \n",
|
||||
" \n",
|
||||
" block10_sepconv2_act (Activati (None, None, None, 0 ['block10_sepconv1_bn[0][0]'] \n",
|
||||
" on) 728) \n",
|
||||
" \n",
|
||||
" block10_sepconv2 (SeparableCon (None, None, None, 536536 ['block10_sepconv2_act[0][0]'] \n",
|
||||
" v2D) 728) \n",
|
||||
" \n",
|
||||
" block10_sepconv2_bn (BatchNorm (None, None, None, 2912 ['block10_sepconv2[0][0]'] \n",
|
||||
" alization) 728) \n",
|
||||
" \n",
|
||||
" block10_sepconv3_act (Activati (None, None, None, 0 ['block10_sepconv2_bn[0][0]'] \n",
|
||||
" on) 728) \n",
|
||||
" \n",
|
||||
" block10_sepconv3 (SeparableCon (None, None, None, 536536 ['block10_sepconv3_act[0][0]'] \n",
|
||||
" v2D) 728) \n",
|
||||
" \n",
|
||||
" block10_sepconv3_bn (BatchNorm (None, None, None, 2912 ['block10_sepconv3[0][0]'] \n",
|
||||
" alization) 728) \n",
|
||||
" \n",
|
||||
" add_8 (Add) (None, None, None, 0 ['block10_sepconv3_bn[0][0]', \n",
|
||||
" 728) 'add_7[0][0]'] \n",
|
||||
" \n",
|
||||
" block11_sepconv1_act (Activati (None, None, None, 0 ['add_8[0][0]'] \n",
|
||||
" on) 728) \n",
|
||||
" \n",
|
||||
" block11_sepconv1 (SeparableCon (None, None, None, 536536 ['block11_sepconv1_act[0][0]'] \n",
|
||||
" v2D) 728) \n",
|
||||
" \n",
|
||||
" block11_sepconv1_bn (BatchNorm (None, None, None, 2912 ['block11_sepconv1[0][0]'] \n",
|
||||
" alization) 728) \n",
|
||||
" \n",
|
||||
" block11_sepconv2_act (Activati (None, None, None, 0 ['block11_sepconv1_bn[0][0]'] \n",
|
||||
" on) 728) \n",
|
||||
" \n",
|
||||
" block11_sepconv2 (SeparableCon (None, None, None, 536536 ['block11_sepconv2_act[0][0]'] \n",
|
||||
" v2D) 728) \n",
|
||||
" \n",
|
||||
" block11_sepconv2_bn (BatchNorm (None, None, None, 2912 ['block11_sepconv2[0][0]'] \n",
|
||||
" alization) 728) \n",
|
||||
" \n",
|
||||
" block11_sepconv3_act (Activati (None, None, None, 0 ['block11_sepconv2_bn[0][0]'] \n",
|
||||
" on) 728) \n",
|
||||
" \n",
|
||||
" block11_sepconv3 (SeparableCon (None, None, None, 536536 ['block11_sepconv3_act[0][0]'] \n",
|
||||
" v2D) 728) \n",
|
||||
" \n",
|
||||
" block11_sepconv3_bn (BatchNorm (None, None, None, 2912 ['block11_sepconv3[0][0]'] \n",
|
||||
" alization) 728) \n",
|
||||
" \n",
|
||||
" add_9 (Add) (None, None, None, 0 ['block11_sepconv3_bn[0][0]', \n",
|
||||
" 728) 'add_8[0][0]'] \n",
|
||||
" \n",
|
||||
" block12_sepconv1_act (Activati (None, None, None, 0 ['add_9[0][0]'] \n",
|
||||
" on) 728) \n",
|
||||
" \n",
|
||||
" block12_sepconv1 (SeparableCon (None, None, None, 536536 ['block12_sepconv1_act[0][0]'] \n",
|
||||
" v2D) 728) \n",
|
||||
" \n",
|
||||
" block12_sepconv1_bn (BatchNorm (None, None, None, 2912 ['block12_sepconv1[0][0]'] \n",
|
||||
" alization) 728) \n",
|
||||
" \n",
|
||||
" block12_sepconv2_act (Activati (None, None, None, 0 ['block12_sepconv1_bn[0][0]'] \n",
|
||||
" on) 728) \n",
|
||||
" \n",
|
||||
" block12_sepconv2 (SeparableCon (None, None, None, 536536 ['block12_sepconv2_act[0][0]'] \n",
|
||||
" v2D) 728) \n",
|
||||
" \n",
|
||||
" block12_sepconv2_bn (BatchNorm (None, None, None, 2912 ['block12_sepconv2[0][0]'] \n",
|
||||
" alization) 728) \n",
|
||||
" \n",
|
||||
" block12_sepconv3_act (Activati (None, None, None, 0 ['block12_sepconv2_bn[0][0]'] \n",
|
||||
" on) 728) \n",
|
||||
" \n",
|
||||
" block12_sepconv3 (SeparableCon (None, None, None, 536536 ['block12_sepconv3_act[0][0]'] \n",
|
||||
" v2D) 728) \n",
|
||||
" \n",
|
||||
" block12_sepconv3_bn (BatchNorm (None, None, None, 2912 ['block12_sepconv3[0][0]'] \n",
|
||||
" alization) 728) \n",
|
||||
" \n",
|
||||
" add_10 (Add) (None, None, None, 0 ['block12_sepconv3_bn[0][0]', \n",
|
||||
" 728) 'add_9[0][0]'] \n",
|
||||
" \n",
|
||||
" block13_sepconv1_act (Activati (None, None, None, 0 ['add_10[0][0]'] \n",
|
||||
" on) 728) \n",
|
||||
" \n",
|
||||
" block13_sepconv1 (SeparableCon (None, None, None, 536536 ['block13_sepconv1_act[0][0]'] \n",
|
||||
" v2D) 728) \n",
|
||||
" \n",
|
||||
" block13_sepconv1_bn (BatchNorm (None, None, None, 2912 ['block13_sepconv1[0][0]'] \n",
|
||||
" alization) 728) \n",
|
||||
" \n",
|
||||
" block13_sepconv2_act (Activati (None, None, None, 0 ['block13_sepconv1_bn[0][0]'] \n",
|
||||
" on) 728) \n",
|
||||
" \n",
|
||||
" block13_sepconv2 (SeparableCon (None, None, None, 752024 ['block13_sepconv2_act[0][0]'] \n",
|
||||
" v2D) 1024) \n",
|
||||
" \n",
|
||||
" block13_sepconv2_bn (BatchNorm (None, None, None, 4096 ['block13_sepconv2[0][0]'] \n",
|
||||
" alization) 1024) \n",
|
||||
" \n",
|
||||
" conv2d_3 (Conv2D) (None, None, None, 745472 ['add_10[0][0]'] \n",
|
||||
" 1024) \n",
|
||||
" \n",
|
||||
" block13_pool (MaxPooling2D) (None, None, None, 0 ['block13_sepconv2_bn[0][0]'] \n",
|
||||
" 1024) \n",
|
||||
" \n",
|
||||
" batch_normalization_3 (BatchNo (None, None, None, 4096 ['conv2d_3[0][0]'] \n",
|
||||
" rmalization) 1024) \n",
|
||||
" \n",
|
||||
" add_11 (Add) (None, None, None, 0 ['block13_pool[0][0]', \n",
|
||||
" 1024) 'batch_normalization_3[0][0]'] \n",
|
||||
" \n",
|
||||
" block14_sepconv1 (SeparableCon (None, None, None, 1582080 ['add_11[0][0]'] \n",
|
||||
" v2D) 1536) \n",
|
||||
" \n",
|
||||
" block14_sepconv1_bn (BatchNorm (None, None, None, 6144 ['block14_sepconv1[0][0]'] \n",
|
||||
" alization) 1536) \n",
|
||||
" \n",
|
||||
" block14_sepconv1_act (Activati (None, None, None, 0 ['block14_sepconv1_bn[0][0]'] \n",
|
||||
" on) 1536) \n",
|
||||
" \n",
|
||||
" block14_sepconv2 (SeparableCon (None, None, None, 3159552 ['block14_sepconv1_act[0][0]'] \n",
|
||||
" v2D) 2048) \n",
|
||||
" \n",
|
||||
" block14_sepconv2_bn (BatchNorm (None, None, None, 8192 ['block14_sepconv2[0][0]'] \n",
|
||||
" alization) 2048) \n",
|
||||
" \n",
|
||||
" block14_sepconv2_act (Activati (None, None, None, 0 ['block14_sepconv2_bn[0][0]'] \n",
|
||||
" on) 2048) \n",
|
||||
" \n",
|
||||
" global_average_pooling2d (Glob (None, 2048) 0 ['block14_sepconv2_act[0][0]'] \n",
|
||||
" alAveragePooling2D) \n",
|
||||
" \n",
|
||||
" dense (Dense) (None, 13) 26637 ['global_average_pooling2d[0][0]'\n",
|
||||
" ] \n",
|
||||
" \n",
|
||||
"==================================================================================================\n",
|
||||
"Total params: 20,888,117\n",
|
||||
"Trainable params: 20,833,589\n",
|
||||
"Non-trainable params: 54,528\n",
|
||||
"__________________________________________________________________________________________________\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for layer in base_model.layers:\n",
|
||||
" layer.trainable = True\n",
|
||||
" \n",
|
||||
"output = Dense(13, activation='softmax')(base_model.output)\n",
|
||||
"model = tf.keras.Model(base_model.input, output)\n",
|
||||
"#model = add_regularization(model)\n",
|
||||
"model.summary()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "ea620129",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#model.add(Dropout(.5))\n",
|
||||
"#model.add(Dense(64, activation='softmax'))\n",
|
||||
"# model.add(Dropout(.25))\n",
|
||||
"#model = add_regularization(model)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "fd5d1246",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.compile(optimizer=Adam(learning_rate=.0001), loss='categorical_crossentropy',\n",
|
||||
" metrics=['accuracy'])\n",
|
||||
"# sparse_categorical_crossentropy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "9cd2ba27",
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Epoch 1/30\n",
|
||||
"80/80 [==============================] - 78s 913ms/step - loss: 1.8419 - accuracy: 0.4153 - val_loss: 2.6144 - val_accuracy: 0.0720\n",
|
||||
"Epoch 2/30\n",
|
||||
"80/80 [==============================] - 69s 862ms/step - loss: 0.9255 - accuracy: 0.7121 - val_loss: 2.5804 - val_accuracy: 0.1026\n",
|
||||
"Epoch 3/30\n",
|
||||
"80/80 [==============================] - 72s 900ms/step - loss: 0.4003 - accuracy: 0.9092 - val_loss: 2.4443 - val_accuracy: 0.2310\n",
|
||||
"Epoch 4/30\n",
|
||||
"80/80 [==============================] - 71s 888ms/step - loss: 0.1224 - accuracy: 0.9847 - val_loss: 2.1299 - val_accuracy: 0.3782\n",
|
||||
"Epoch 5/30\n",
|
||||
"80/80 [==============================] - 75s 935ms/step - loss: 0.0371 - accuracy: 0.9975 - val_loss: 1.7368 - val_accuracy: 0.4973\n",
|
||||
"Epoch 6/30\n",
|
||||
"80/80 [==============================] - 73s 900ms/step - loss: 0.0167 - accuracy: 0.9992 - val_loss: 1.6747 - val_accuracy: 0.5341\n",
|
||||
"Epoch 7/30\n",
|
||||
"80/80 [==============================] - 72s 897ms/step - loss: 0.0097 - accuracy: 0.9998 - val_loss: 1.6494 - val_accuracy: 0.5442\n",
|
||||
"Epoch 8/30\n",
|
||||
"80/80 [==============================] - 74s 915ms/step - loss: 0.0062 - accuracy: 0.9998 - val_loss: 1.6659 - val_accuracy: 0.5568\n",
|
||||
"Epoch 9/30\n",
|
||||
"80/80 [==============================] - 74s 917ms/step - loss: 0.0044 - accuracy: 1.0000 - val_loss: 1.7088 - val_accuracy: 0.5615\n",
|
||||
"Epoch 10/30\n",
|
||||
"80/80 [==============================] - 70s 868ms/step - loss: 0.0035 - accuracy: 1.0000 - val_loss: 1.7540 - val_accuracy: 0.5583\n",
|
||||
"Epoch 11/30\n",
|
||||
"80/80 [==============================] - 70s 864ms/step - loss: 0.0027 - accuracy: 0.9998 - val_loss: 1.7894 - val_accuracy: 0.5552\n",
|
||||
"Epoch 12/30\n",
|
||||
"80/80 [==============================] - 69s 858ms/step - loss: 0.0020 - accuracy: 1.0000 - val_loss: 1.8126 - val_accuracy: 0.5536\n",
|
||||
"Epoch 13/30\n",
|
||||
"80/80 [==============================] - 69s 857ms/step - loss: 0.0019 - accuracy: 1.0000 - val_loss: 1.8496 - val_accuracy: 0.5544\n",
|
||||
"Epoch 14/30\n",
|
||||
"80/80 [==============================] - 69s 859ms/step - loss: 0.0015 - accuracy: 1.0000 - val_loss: 1.8646 - val_accuracy: 0.5544\n",
|
||||
"Epoch 15/30\n",
|
||||
"30/80 [==========>...................] - ETA: 36s - loss: 0.0011 - accuracy: 1.0000"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "KeyboardInterrupt",
|
||||
"evalue": "",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-18-4cd4443bbf2a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m model.fit(x=train_generator,\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_generator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mvalidation_data\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvalidation_generator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mvalidation_steps\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalidation_generator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# pylint: disable=broad-except\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[1;32m 1219\u001b[0m \u001b[0mlogs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp_logs\u001b[0m \u001b[0;31m# No error, now safe to assign to logs.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1220\u001b[0m \u001b[0mend_step\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstep\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep_increment\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1221\u001b[0;31m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_train_batch_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mend_step\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1222\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_training\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1223\u001b[0m \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/callbacks.py\u001b[0m in \u001b[0;36mon_train_batch_end\u001b[0;34m(self, batch, logs)\u001b[0m\n\u001b[1;32m 434\u001b[0m \"\"\"\n\u001b[1;32m 435\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_should_call_train_batch_hooks\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 436\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_batch_hook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mModeKeys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTRAIN\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'end'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlogs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 437\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 438\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mon_test_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/callbacks.py\u001b[0m in \u001b[0;36m_call_batch_hook\u001b[0;34m(self, mode, hook, batch, logs)\u001b[0m\n\u001b[1;32m 293\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_batch_begin_hook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 294\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mhook\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'end'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 295\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_batch_end_hook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 296\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 297\u001b[0m raise ValueError(\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/callbacks.py\u001b[0m in \u001b[0;36m_call_batch_end_hook\u001b[0;34m(self, mode, batch, logs)\u001b[0m\n\u001b[1;32m 314\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_batch_times\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_time\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 315\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 316\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_batch_hook_helper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhook_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 317\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 318\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_batch_times\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_batches_for_timing_check\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/callbacks.py\u001b[0m in \u001b[0;36m_call_batch_hook_helper\u001b[0;34m(self, hook_name, batch, logs)\u001b[0m\n\u001b[1;32m 352\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mcallback\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallbacks\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 353\u001b[0m \u001b[0mhook\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcallback\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhook_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 354\u001b[0;31m \u001b[0mhook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 355\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 356\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_check_timing\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/callbacks.py\u001b[0m in \u001b[0;36mon_train_batch_end\u001b[0;34m(self, batch, logs)\u001b[0m\n\u001b[1;32m 1030\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1031\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mon_train_batch_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1032\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_batch_update_progbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1033\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1034\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mon_test_batch_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/callbacks.py\u001b[0m in \u001b[0;36m_batch_update_progbar\u001b[0;34m(self, batch, logs)\u001b[0m\n\u001b[1;32m 1102\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mverbose\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1103\u001b[0m \u001b[0;31m# Only block async when verbose = 1.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1104\u001b[0;31m \u001b[0mlogs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_utils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msync_to_numpy_or_python_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlogs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1105\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprogbar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseen\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlogs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfinalize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1106\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/utils/tf_utils.py\u001b[0m in \u001b[0;36msync_to_numpy_or_python_type\u001b[0;34m(tensors)\u001b[0m\n\u001b[1;32m 552\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mt\u001b[0m \u001b[0;31m# Don't turn ragged or sparse tensors to NumPy.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 553\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 554\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap_structure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_to_single_numpy_or_python_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtensors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 555\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 556\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/util/nest.py\u001b[0m in \u001b[0;36mmap_structure\u001b[0;34m(func, *structure, **kwargs)\u001b[0m\n\u001b[1;32m 867\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 868\u001b[0m return pack_sequence_as(\n\u001b[0;32m--> 869\u001b[0;31m \u001b[0mstructure\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mentries\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 870\u001b[0m expand_composites=expand_composites)\n\u001b[1;32m 871\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/util/nest.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 867\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 868\u001b[0m return pack_sequence_as(\n\u001b[0;32m--> 869\u001b[0;31m \u001b[0mstructure\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mentries\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 870\u001b[0m expand_composites=expand_composites)\n\u001b[1;32m 871\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/keras/utils/tf_utils.py\u001b[0m in \u001b[0;36m_to_single_numpy_or_python_type\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 548\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_to_single_numpy_or_python_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 549\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTensor\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 550\u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 551\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 552\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mt\u001b[0m \u001b[0;31m# Don't turn ragged or sparse tensors to NumPy.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py\u001b[0m in \u001b[0;36mnumpy\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1147\u001b[0m \"\"\"\n\u001b[1;32m 1148\u001b[0m \u001b[0;31m# TODO(slebedev): Consider avoiding a copy for non-CPU or remote tensors.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1149\u001b[0;31m \u001b[0mmaybe_arr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_numpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# pylint: disable=protected-access\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1150\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mmaybe_arr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmaybe_arr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mmaybe_arr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1151\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py\u001b[0m in \u001b[0;36m_numpy\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1113\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_numpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1114\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1115\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_numpy_internal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1116\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# pylint: disable=protected-access\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1117\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_status_to_exception\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;31m# pylint: disable=protected-access\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model.fit(x=train_generator,\n",
|
||||
" steps_per_epoch=len(train_generator),\n",
|
||||
" validation_data=validation_generator,\n",
|
||||
" validation_steps=len(validation_generator),\n",
|
||||
" epochs=30,\n",
|
||||
" verbose=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "63f791af",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.10"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
91
ebay_api.py
91
ebay_api.py
@ -27,20 +27,20 @@ class FindingApi:
|
||||
Methods for accessing eBay's FindingApi services
|
||||
'''
|
||||
|
||||
def __init__(self, service, idspc):
|
||||
def __init__(self, service):
|
||||
self.service = [
|
||||
'findItemsAdvanced', 'findCompletedItems',
|
||||
'findItemsByKeywords', 'findItemsIneBayStores', 'findItemsByCategory',
|
||||
'findItemsByProduct'
|
||||
][service] # Currently using only index 4, i.e., service = 4
|
||||
self.idspc = idspc # examples of additional params you may want to add:
|
||||
# examples of additional params you may want to add:
|
||||
# 'itemFilter(0).value':'Used' consider using this with findCompletedItems call
|
||||
# 'itemFilter(1).name':'ListingType'
|
||||
# 'itemFilter(1).value':'AuctionWithBIN'
|
||||
# 'StartTimeNewest'
|
||||
# HideDuplicateItems
|
||||
|
||||
def get_data(self, category_id, idspc):
|
||||
def get_data(self, category_id):
|
||||
|
||||
'''
|
||||
Gets raw JSON data fom FindingApi service call. Currently being used to
|
||||
@ -51,8 +51,6 @@ class FindingApi:
|
||||
# days_on_site = (now - startTime).days # as int
|
||||
|
||||
ids = []
|
||||
modTimeFrom = datetime.now() - timedelta(seconds=5) # initialize modTimeFrom value
|
||||
i = 1
|
||||
params = {
|
||||
"OPERATION-NAME":self.service,
|
||||
"SECURITY-APPNAME":cfg.sec['SECURITY-APPNAME'],
|
||||
@ -60,62 +58,37 @@ class FindingApi:
|
||||
"RESPONSE-DATA-FORMAT":"JSON",
|
||||
"categoryId":category_id,
|
||||
"paginationInput.entriesPerPage":"100",
|
||||
"paginationInput.PageNumber":i,
|
||||
"paginationInput.PageNumber":"1",
|
||||
"itemFilter(0).name":"Condition",
|
||||
"itemFilter(0).value":"Used",
|
||||
"itemFilter.name":"HideDuplicateItems",
|
||||
"itemFilter.value":"true",
|
||||
"sortOrder":"StartTimeNewest",
|
||||
"itemFilter(1).name":"TopRatedSellerOnly",
|
||||
"itemFilter(1).value":"true",
|
||||
}
|
||||
|
||||
# "itemFilter.name(2)":"modTimeFrom",
|
||||
# "itemFilter.value(2)":modTimeFrom,
|
||||
try:
|
||||
response = requests.get("https://svcs.ebay.com/services/search/FindingService/v1",
|
||||
params=params, timeout=24)
|
||||
response.raise_for_status()
|
||||
|
||||
while len(ids) < idspc:
|
||||
except requests.exceptions.RequestException: # appears this works need to be able to continue where you left off or use better timeout?
|
||||
print('connection error')
|
||||
return ids
|
||||
try:
|
||||
data = response.json()
|
||||
for item in data['findItemsByCategoryResponse'][0]['searchResult'][0]['item']:
|
||||
ids.append(item['itemId'][0])
|
||||
|
||||
try:
|
||||
response = requests.get("https://svcs.ebay.com/services/search/FindingService/v1",
|
||||
params=params, timeout=24)
|
||||
response.raise_for_status()
|
||||
ids = list(set(ids))
|
||||
|
||||
except requests.exceptions.RequestException: # appears this works need to be able to continue where you left off or use better timeout?
|
||||
print('connection error')
|
||||
return ids
|
||||
try:
|
||||
data = response.json()
|
||||
itemSearchURL = data['findItemsByCategoryResponse'][0]['itemSearchURL'][0]
|
||||
modTimeFrom = data['findItemsByCategoryResponse'][0]['searchResult'][0]['item'][-1]['listingInfo'][0]['startTime'][0]
|
||||
modTimeFrom = dateutil.parser.isoparse( modTimeFrom )
|
||||
modTimeFrom = modTimeFrom - timedelta(seconds=5) # TODO NEED BACK TO GMT FORMAT
|
||||
for item in data['findItemsByCategoryResponse'][0]['searchResult'][0]['item']:
|
||||
# if item not in ids:
|
||||
ids.append(item['itemId'][0])
|
||||
except (AttributeError, KeyError):
|
||||
print('AttributeError or KeyError. Exiting')
|
||||
print(response.json())
|
||||
return ids
|
||||
|
||||
#ids = list(set(ids))
|
||||
|
||||
except (AttributeError, KeyError):
|
||||
print('AttributeError or KeyError. Exiting')
|
||||
print(response.json())
|
||||
return ids
|
||||
|
||||
input('press enter to continue')
|
||||
i+=1
|
||||
params = {
|
||||
"OPERATION-NAME":self.service,
|
||||
"SECURITY-APPNAME":cfg.sec['SECURITY-APPNAME'],
|
||||
"SERVICE-VERSION":"1.13.0",
|
||||
"RESPONSE-DATA-FORMAT":"JSON",
|
||||
"categoryId":category_id,
|
||||
"paginationInput.entriesPerPage":"20",
|
||||
"paginationInput.PageNumber":i,
|
||||
"itemFilter(0).name":"Condition",
|
||||
"itemFilter(0).value":"Used",
|
||||
"itemFilter.name":"HideDuplicateItems",
|
||||
"itemFilter.value":"true",
|
||||
"sortOrder":"StartTimeNewest",
|
||||
}
|
||||
|
||||
return ids, data, modTimeFrom, itemSearchURL
|
||||
return ids
|
||||
|
||||
# TODO add some other options to finding call api such as for possibly filtering for used items only. This might give you a better dataset for training. Or maybe a mixture of new and used. Maybe
|
||||
# try and come up with a way to mathematically determine your odds of maximizing the number of pictures in your training set while reducing the number of useless images. Say for example, if you took a
|
||||
@ -125,36 +98,32 @@ class FindingApi:
|
||||
# You may even have more consistency with used shoes since they are "one-off" items without confusing multiple variations and colors. What else you can do is run small training sets on both new and used
|
||||
# to see which one is more accurate or if a combo of both is more accurate.
|
||||
|
||||
def get_ids_from_cats(self): #TODO need to resolve duplicates here to maximize unique ids/data and ShopppingApi call
|
||||
def get_ids_from_cats(self):
|
||||
'''
|
||||
Creates a 20-itemId list to use for the ShoppingApi
|
||||
call
|
||||
'''
|
||||
# target_idspc = self.target_idspc
|
||||
idspc = self.idspc
|
||||
|
||||
itemid_results_list = []
|
||||
|
||||
with open('cat_list.txt') as jf:
|
||||
cat_list = json.load(jf)
|
||||
|
||||
for cat in cat_list:
|
||||
args = [(cat, idspc) for cat in cat_list]
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
for future in executor.map(lambda p: self.get_data(*p), args):
|
||||
itemid_results_list.extend(future)
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
for future in executor.map(self.get_data, cat_list):
|
||||
itemid_results_list.extend(future)
|
||||
|
||||
print(len(itemid_results_list))
|
||||
a = list(set(itemid_results_list))
|
||||
print(len(a))
|
||||
input('press enter to continue')
|
||||
|
||||
with open('raw_ids.txt', 'w') as f:
|
||||
json.dump(itemid_results_list, f)
|
||||
|
||||
# 20-ItemID list created to maximize dataset/decrease calls given call constraints
|
||||
item_id_results = [','.join(itemid_results_list[n:n+20]) for n in list(range(0,
|
||||
len(itemid_results_list), 20))] # 20-ItemID list created to maximize dataset/decrease calls given call constraints
|
||||
len(itemid_results_list), 20))]
|
||||
|
||||
return item_id_results, itemid_results_list
|
||||
|
||||
class ShoppingApi:
|
||||
|
Loading…
Reference in New Issue
Block a user