adding multithreading to first call in main

This commit is contained in:
spbeach46 2020-11-08 18:47:03 -07:00
parent 5965f19d2a
commit 1134d3f155

View File

@ -1,9 +1,10 @@
import concurrent.futures
import json
import requests
import pandas as pd
class FindingApi:
'''Some docstring to get rid of linting errors'''
'''Methods for accessing eBays FindingApi services'''
def __init__(self, service, pageNumber):
self.service = [
'findItemsAdvanced', 'findCompletedItems',
@ -14,8 +15,8 @@ class FindingApi:
# this will give equal weights to cats given call constraints
# departments = ["3034","93427"] (womens and mens)
def get_data(self):
'''# Gets raw JSON data fom FindingApi service call
def get_data(self): # TODO FIX THIS TO WORK WITH MULTITHREADING. Need to figure out how to handle data variable. Simplest solution would be to append in def and every call of def in thread. every other method in following classes depend on data variable generated from here. You'll need to decide on way to append data var.
'''Gets raw JSON data fom FindingApi service call
'''
with open('cat_list.txt') as jf:
cat_list = json.load(jf)
@ -33,22 +34,21 @@ class FindingApi:
response = requests.get("https://svcs.ebay.com/services/search/FindingService/v1",
params=params)
data = response.json()
return data
return data # TODO MAY HAVE TO RUN IN THREADPOOLEXECUTOR() IN MAIN() AND SAVE DATA TO FILE
def get_ids_from_cats(self):
'''
Creates a 20-itemId list to use for the ShoppingApi
call
'''
data = self.get_data()
data = self.get_data() # TODO consider using different variable names to avoid confusion between FindingApi data and ShoppingApi data
itemid_results_list = []
try:# TODO run pdb here to see how to extract itemId before update_df
try:
training = pd.read_csv('training.csv')
for item in data['findItemsByCategoryResponse'][0]['searchResult'][0]['item']:
if (item not in training.values) and (item not in itemid_results_list):
itemid_results_list.append(item['itemId'][0]) # itemId
# values are in lists for some reason
itemid_results_list.append(item['itemId'][0]) # TODO something funky going on here. zeroth index? why? itemIds from FindingApi call are in lists (due to "variations" listings)
except (pd.errors.EmptyDataError, FileNotFoundError):
for item in data['findItemsByCategoryResponse'][0]['searchResult'][0]['item']:
@ -85,47 +85,69 @@ class ShoppingApi:
class CurateData:
'''
Contains functions for curating data for machine learning training sets
Contains functions for curating data for machine learning training sets;
Takes item in data from ShoppingApi request as argument and extracts/ creates key
value pairs that gets updated to custom dataframe used in Ml training sets.
'''
def extract_itemid(self, data):
for item in data['Item']:
item_id = ['ItemID']
def extract_prime_cat(self, data):
for item in data['Item']:
prime_cat = ['PrimaryCategory']
def extract_picture_url(self, data):
for item in data['Item']:
picture_url_list = ['PictureURL']
def extract_nvl(self, data):
for item in data['item']:
training = {}
names = []
values = []
nvl = item['itemspecifics']['namevaluelist']
for nvl_dict in nvl:
names.append(nvl_dict['name'])
values.append(nvl_dict['value'])
# todo also append itemid and value to the dictionary somewhere
def extract_itemId(self, item):
item_id = {'ItemID':item['ItemID']}
return item_id
def extract_catId(self, item):
catId = {'PrimaryCategoryID':item['PrimaryCategoryID']}
return catId
def extract_prime_cat_name(self, item):
prime_cat_name= {'PrimaryCategoryName':item['PrimaryCategoryName']}
return prime_cat_name
def extract_picture_url(self, item):
'''
Only pulls PictureURL list and does not
create dictionary
'''
picture_url_list = item['PictureURL']
return picture_url_list
def extract_nvl(self, item):
names = []
values = []
nvl = item['itemspecifics']['namevaluelist']
for nvl_dict in nvl:
names.append(nvl_dict['name'])
values.append(nvl_dict['value'])
nvl_dict = dict(zip(names, values))
return nvl_dict
nvl_dict = dict(zip(names, values))
def update_df(self, data):
'''
Extracts itemIds and name-value list , creates new dict and appends df
Creates training instances for dataset. picture_url_list expanded to
max available pictures with each picture url corresponding to features
in common with same listing (i.e., because there are multiple pictures
per listing, each picture will be its own training instance.
'''
for item in data['item']:
training = {}
names = []
values = []
nvl = item['itemspecifics']['namevaluelist']
for nvl_dict in nvl:
names.append(nvl_dict['name'])
values.append(nvl_dict['value'])
# todo also append itemid and value to the dictionary somewhere
nvl_dict = dict(zip(names, values))
training.update(nvl_dict) # todo just creating a training variable will not include itemid, picture urls, or categories which you will still need for your df so you can either extract them and append them to training or you can solely modify the data variable but you will have to deal with runtime error.
# probably best to extract and making custom df
df = pd.json_normalize(training)
training = {} # TODO something funky going on here
# NEED TO CREATE EMPTY DICT OUTSIDE OF FOR LOOP?
picture_url_list = self.extract_picture_url(item)
'''
Creates same training instance per photo for
'''
for url in picture_url_list:
remote_url = {'PictureURL':url}
training.update(remote_url)
item_id = self.extract_itemId(item)
training.update(item_id)
catId = self.extract_catId(item)
training.update(catId)
prime_cat_name = self.extract_prime_cat_name(item)
training.update(prime_cat_name)
nvl_dict = self.extract_nvl(item)
training.update(nvl_dict)
df = pd.json_normalize(training) # TODO FIX INDENT HERE?
df.to_csv('training.csv', mode='a')
def main():
@ -137,6 +159,10 @@ def main():
service = int(service)
pageNumber = int(pageNumber)
finding = FindingApi(service, pageNumber)
# TODO START MULTITHREADING HERE FOR FINDINGAPI CALL?
with concurrent.futures.ThreadPoolExecutor() as executor:
for future in executor.map(finding.get_ids_from_cats(), finding.pageNumber):
item_id_results = finding.get_ids_from_cats()
shopping = ShoppingApi()
data = shopping.get_item_from_findItemsByCategory(item_id_results)
@ -145,6 +171,7 @@ def main():
if __name__ == "__main__":
main()
# Limited to 5000 calls to shopping api per day, and getMultpileitems service maxes out at 20 items
# per call leaving you 100,000 items per day for you pandas dataframe initially. So you'll have
# to divide these up into the categories. This will leave you with about 6.25K results per cat.
@ -154,3 +181,6 @@ if __name__ == "__main__":
# access values for cross referencing itemIds from calls
# Need to decide if list gets accessed from df or if you're just going to have
# list contents extracted and possibly placed into separate cells/labels
# TODO NEED TO ADD TRY EXCEPT CONDITIONS FOR EVERY CALL MADE TO API SERVICES TO
# TO AVOID HICCUPS WHEN CREATING DATASET