ebay-ml-lister/ebay_api_test.py

36 lines
1.2 KiB
Python
Raw Normal View History

2020-08-23 13:08:15 +00:00
import requests
import json
from bs4 import BeautifulSoup as b
2020-08-24 18:25:22 +00:00
import pandas as p
2020-08-23 13:08:15 +00:00
2020-08-24 18:25:22 +00:00
# keywords = input('keyword search: ')
2020-08-23 13:08:15 +00:00
2020-08-24 03:17:24 +00:00
with open('cat_list.txt') as jf:
cat_list = json.load(jf)
finding_service = ['findItemsAdvanced', 'findCompletedItems', 'findItemsByKeywords', 'findItemsIneBayStores', 'findItemsByCategory', 'findItemsByProduct']
2020-09-30 03:06:34 +00:00
pageNumber = list(range(1,101))
2020-08-24 18:25:22 +00:00
# departments = ["3034","93427"]
itemid_results_list = []
for categoryID in cat_list[0:2]:
2020-08-23 13:08:15 +00:00
params = {
2020-08-24 18:25:22 +00:00
"OPERATION-NAME":finding_service[4],
"SECURITY-APPNAME":"scottbea-xlister-PRD-6796e0ff6-14862949",
2020-08-23 13:08:15 +00:00
"SERVICE-VERSION":"1.13.0",
"RESPONSE-DATA-FORMAT":"JSON",
"categoryId":categoryID ,
"paginationInput.entriesPerPage":"100",
2020-09-30 03:06:34 +00:00
"paginationInput.PageNumber":pageNumber[0]
2020-08-23 13:08:15 +00:00
}
2020-09-30 03:06:34 +00:00
# extract item id here for piping into shopping_test.py
2020-08-23 13:08:15 +00:00
response = requests.get("https://svcs.ebay.com/services/search/FindingService/v1", params=params)
2020-08-23 13:08:15 +00:00
data = response.json()
pretty_data = json.dumps(data, indent=2)
2020-09-30 03:06:34 +00:00
# can use pandas.json_normalize(custom dict cobbled from respons.json())
2020-09-30 03:08:37 +00:00
2020-08-23 13:08:15 +00:00
# Additional problem you will run into when getting labeled data is shoe types and features not in features, accents, styles, categories or subcategories.